Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 81(19): 6700-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26187960

ABSTRACT

Azospirillum is a rhizobacterial genus containing plant growth-promoting species associated with different crops worldwide. Azospirillum brasilense strains exhibit a growth-promoting effect by means of phytohormone production and possibly by N2 fixation. However, one of the most important factors for achieving an increase in crop yield by plant growth-promoting rhizobacteria is the survival of the inoculant in the rhizosphere, which is not always achieved. The objective of this study was to develop quantitative PCR protocols for the strain-specific quantification of A. brasilense FP2. A novel approach was applied to identify strain-specific DNA sequences based on a comparison of the genomic sequences within the same species. The draft genome sequences of A. brasilense FP2 and Sp245 were aligned, and FP2-specific regions were filtered and checked for other possible matches in public databases. Strain-specific regions were then selected to design and evaluate strain-specific primer pairs. The primer pairs AzoR2.1, AzoR2.2, AzoR5.1, AzoR5.2, and AzoR5.3 were specific for the A. brasilense FP2 strain. These primer pairs were used to monitor quantitatively the population of A. brasilense in wheat roots under sterile and nonsterile growth conditions. In addition, coinoculations with other plant growth-promoting bacteria in wheat were performed under nonsterile conditions. The results showed that A. brasilense FP2 inoculated into wheat roots is highly competitive and achieves high cell numbers (∼10(7) CFU/g [fresh weight] of root) in the rhizosphere even under nonsterile conditions and when coinoculated with other rhizobacteria, maintaining the population at rather stable levels for at least up to 13 days after inoculation. The strategy used here can be applied to other organisms whose genome sequences are available.


Subject(s)
Azospirillum brasilense/genetics , Plant Roots/microbiology , Real-Time Polymerase Chain Reaction/methods , Triticum/microbiology , Azospirillum brasilense/growth & development , Azospirillum brasilense/isolation & purification , Azospirillum brasilense/metabolism , DNA Primers/genetics , Gene Expression Regulation, Bacterial , Plant Roots/growth & development , Species Specificity , Triticum/growth & development
2.
Enzyme Res ; 2011: 316939, 2011.
Article in English | MEDLINE | ID: mdl-21760993

ABSTRACT

In this work, the lipase from Pyrococcus furiosus encoded by ORF PF2001 was expressed with a fusion protein (thioredoxin) in Escherichia coli. The purified enzymes with the thioredoxin tag (TRX-PF2001Δ60) and without the thioredoxin tag (PF2001Δ60) were characterized, and various influences of Triton X-100 were determined. The optimal temperature for both enzymes was 80°C. Although the thioredoxin presence did not influence the optimum temperature, the TRX-PF2001Δ60 presented specific activity twice lower than the enzyme PF2001Δ60. The enzyme PF2001Δ60 was assayed using MUF-acetate, MUF-heptanoate, and MUF-palmitate. MUF-heptanoate was the preferred substrate of this enzyme. The chelators EDTA and EGTA increased the enzyme activity by 97 and 70%, respectively. The surfactant Triton X-100 reduced the enzyme activity by 50% and lowered the optimum temperature to 60°C. However, the thermostability of the enzyme PF2001Δ60 was enhanced with Triton X-100.

SELECTION OF CITATIONS
SEARCH DETAIL
...