Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 13(3): e0036722, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35420470

ABSTRACT

Acinetobacter baumannii has become a major nosocomial pathogen, as it is often multidrug-resistant, which results in infections characterized by high mortality rates. The bacterium achieves high levels of resistance to ß-lactam antibiotics by producing ß-lactamases, enzymes which destroy these valuable agents. Historically, the carbapenem family of ß-lactam antibiotics have been the drugs of choice for treating A. baumannii infections. However, their effectiveness has been significantly diminished due to the pathogen's production of carbapenem-hydrolyzing class D ß-lactamases (CHDLs); thus, new antibiotics and inhibitors of these enzymes are urgently needed. Here, we describe a new carbapenem antibiotic, MA-1-206, in which the canonical C6 hydroxyethyl group has been replaced with hydroxymethyl. The antimicrobial susceptibility studies presented here demonstrated that this compound is more potent than meropenem and imipenem against A. baumannii producing OXA-23, the most prevalent CHDL of this pathogen, and also against strains producing the CHDL OXA-24/40 and the class B metallo-ß-lactamase VIM-2. Our kinetic and mass spectrometry studies revealed that this drug is a reversible inhibitor of OXA-23, where inhibition takes place through a branched pathway. X-ray crystallographic studies, molecular docking, and molecular dynamics simulations of the OXA-23-MA-1-206 complex show that the C6 hydroxymethyl group forms a hydrogen bond with the carboxylated catalytic lysine of OXA-23, effectively preventing deacylation. These results provide a promising strategy for designing a new generation of CHDL-resistant carbapenems to restore their efficacy against deadly A. baumannii infections. IMPORTANCE Carbapenem antibiotics are the drugs of choice for treatment of deadly infections caused by Gram-negative bacteria. However, their efficacy is severely compromised by the wide spread of carbapenem-hydrolyzing class D ß-lactamases (CHDLs). The importance of this research is the discovery that substitution of the canonical hydroxyethyl group of carbapenems by a hydroxymethyl significantly enhances stability against inactivation by the major CHDL of Acinetobacter baumannii, OXA-23. These results provide a novel strategy for designing next-generation, carbapenemase-stable carbapenems to fight multidrug-resistant infections caused by Gram-negative pathogens.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Bacterial Proteins , beta-Lactamase Inhibitors , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Carbapenems/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism
2.
ACS Infect Dis ; 7(8): 2425-2436, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34191496

ABSTRACT

Commercial carbapenem antibiotics are being used to treat multidrug resistant (MDR) and extensively drug resistant (XDR) tuberculosis. Like other ß-lactams, carbapenems are irreversible inhibitors of serine d,d-transpeptidases involved in peptidoglycan biosynthesis. In addition to d,d-transpeptidases, mycobacteria also utilize nonhomologous cysteine l,d-transpeptidases (Ldts) to cross-link the stem peptides of peptidoglycan, and carbapenems form long-lived acyl-enzymes with Ldts. Commercial carbapenems are C2 modifications of a common scaffold. This study describes the synthesis of a series of atypical, C5α modifications of the carbapenem scaffold, microbiological evaluation against Mycobacterium tuberculosis (Mtb) and the nontuberculous mycobacterial species, Mycobacterium abscessus (Mab), as well as acylation of an important mycobacterial target Ldt, LdtMt2. In vitro evaluation of these C5α-modified carbapenems revealed compounds with standalone (i.e., in the absence of a ß-lactamase inhibitor) minimum inhibitory concentrations (MICs) superior to meropenem-clavulanate for Mtb, and meropenem-avibactam for Mab. Time-kill kinetics assays showed better killing (2-4 log decrease) of Mtb and Mab with lower concentrations of compound 10a as compared to meropenem. Although susceptibility of clinical isolates to meropenem varied by nearly 100-fold, 10a maintained excellent activity against all Mtb and Mab strains. High resolution mass spectrometry revealed that 10a acylates LdtMt2 at a rate comparable to meropenem, but subsequently undergoes an unprecedented carbapenem fragmentation, leading to an acyl-enzyme with mass of Δm = +86 Da. Rationale for the divergence of the nonhydrolytic fragmentation of the LdtMt2 acyl-enzymes is proposed. The observed activity illustrates the potential of novel atypical carbapenems as prospective candidates for treatment of Mtb and Mab infections.


Subject(s)
Carbapenems , Peptidyl Transferases , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Prospective Studies , beta-Lactamase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...