Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34960878

ABSTRACT

Academic research regarding polymeric materials has been of great interest. Likewise, polymer industries are considered as the most familiar petrochemical industries. Despite the valuable and continuous advancements in various polymeric material technologies over the last century, many varieties and advances related to the field of polymer science and engineering still promise a great potential for exciting new applications. Research, development, and industrial support have been the key factors behind the great progress in the field of polymer applications. This work provides insight into the recent energy applications of polymers, including energy storage and production. The study of polymeric materials in the field of enhanced oil recovery and water treatment technologies will be presented and evaluated. In addition, in this review, we wish to emphasize the great importance of various functional polymers as effective adsorbents of organic pollutants from industrial wastewater. Furthermore, recent advances in biomedical applications are reviewed and discussed.

2.
Materials (Basel) ; 12(22)2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31752368

ABSTRACT

This investigation determined a feasible route to prepare hyperbranched polyesters involving citric acid (CA) and glycerol (GLC) monomers (CA-co-GLC) using a thermal polycondensation method. The synthesized copolymer was characterized using Fourier transform infrared spectroscopy (FT-IR), carbon-13 nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. The ability of CA-co-GLC to inhibit deposition of inorganic scales such as calcium carbonate was investigated under varying temperature and pH medium. The evaluation of inhibition efficiency (IE) was conducted using the static scale inhibition method. The mechanism of the inhibitor's action was investigated via growth solution analysis, measurement conductivity, and analysis of CaCO3 using FT-IR and scanning electron microscopy. The results obtained showed that the CA-co-GLC had good IE at an elevated temperature reaching 75% at 100 °C, pH 7.5, and 10 ppm copolymer dose. Using the same dose, the IE reached 66% at 50 °C and pH 10. The CA-co-GLC did not chelate Ca2+ in water, but led to a change in polymorphism, making it brittle and able to slip easily from the surface. Its action principally prevented the adhesion of calcium carbonate onto the surface.

3.
Membranes (Basel) ; 8(4)2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30463248

ABSTRACT

High-performance polybenzimidazole (PBI) hollow-fiber membranes (HFMs) were fabricated through a continuous dry-jet wet spinning process at SRI International. By adjusting the spinning air gap from 4″ (10.2 cm) to 0.5″ (1.3 cm), the HFM pore sizes were enlarged dramatically without any significant change of the fiber dimensional size and barrier layer thickness. When fabricated with an air gap of 2.5″ (6.4 cm) and a surface modified by NaClO solution, the PBI HFM performance was comparable to that of a commercial reverse osmosis (RO) HFM product from Toyobo in terms of salt (NaCl) rejection and water permeability. The PBI RO HFM was positively surface charged in acidic conditions (pH < 7), which enhanced salt rejection via the Donnan effect. With an air gap of 1.5″ (3.8 cm), the PBI HFM rejected MgSO4 and Na2SO4 above 95%, a result that compares favorably with that achieved by nanofiltration. In addition, the PBI HFM has a defect-free structure with an ultra-thin barrier layer and porous sublayer. We believe PBI HFMs are ideal for water purification and can be readily commercialized.

SELECTION OF CITATIONS
SEARCH DETAIL
...