Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 98(3): 1105-14, 1992 Mar.
Article in English | MEDLINE | ID: mdl-16668733

ABSTRACT

The aim of this study was to determine the response of photosynthetic carbon metabolism in spinach and bean to low temperature. (a) Exposure of warm-grown spinach and bean plants to 10 degrees C for 10 days resulted in increases in the total activities of a number of enzymes, including ribulose 1,5-bisphosphate carboxylase (Rubisco), stromal fructose 1,6 bisphosphatase (Fru 1,6-P(2)ase), sedoheptulose 1,7-bisphosphatase (Sed 1,7-P(2)ase), and the cytosolic Fru 1,6-P(2)ase. In spinach, but not bean, there was an increase in the total activity of sucrose-phosphate synthase. (b) The CO(2)-saturated rates of photosynthesis for the cold-acclimated spinach plants were 68% greater at 10 degrees C than those for warm-acclimated plants, whereas in bean, rates of photosynthesis at 10 degrees C were very low after exposure to low temperature. (c) When spinach leaf discs were transferred from 27 to 10 degrees C, the stromal Fru 1,6-P(2)ase and NADP-malate dehydrogenase were almost fully activated within 8 minutes, and Rubisco reached 90% of full activation within 15 minutes of transfer. An initial restriction of Calvin cycle fluxes was evident as an increase in the amounts of ribulose 1,5-bisphosphate, glycerate-3-phosphate, Fru 1,6-P(2), and Sed 1,7-P(2). In bean, activation of stromal Fru 1,6-P(2)ase was weak, whereas the activation state of Rubisco decreased during the first few minutes after transfer to low temperature. However, NADP-malate dehydrogenase became almost fully activated, showing that no loss of the capacity for reductive activation occurred. (d) Temperature compensation in spinach evidently involves increases in the capacities of a range of enzymes, achieved in the short term by an increase in activation state, whereas long-term acclimation is achieved by an increase in the maximum activities of enzymes. The inability of bean to activate fully certain Calvin cycle enzymes and sucrose-phosphate synthase, or to increase nonphotochemical quenching of chlorophyll fluorescence at 10 degrees C, may be factors contributing to its poor performance at low temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...