Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 335: 139104, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37271469

ABSTRACT

The current research concentrated on the Co-precipitation synthesis of g-C3N4 (CN), ZnO, ZnO/CN, and Co-doped ZnO/CN nanocomposite, as well as the solar light enhanced photocatalytic treatment of Reactive Red 120 (RR120) from genuine wool textile effluent. The 3D flower-like structure of Co-doped ZnO distributed on the surface of CN thin sheets, according to structural studies employing XRD and SEM examinations Electrochemical experiments exhibited that the Co-doped ZnO/CN nanocomposite has a large electroactive surface area. The optical band-gap values of CN, ZnO, ZnO/CN, and Co-doped ZnO/CN nanocomposites were 2.68, 3.13, 2.38, and 2.23 eV, respectively, according to optical characterizations. The synergistic effects and heterojunction produced by Co-doped ZnO and CN can be linked to the narrow gap in nanocomposites. After 75, 60, 50, and 40 min of exposure to solar light, photocatalytic degradation assays for 250 mL of 20 mg/L RR120 solution in the presence of CN, ZnO, ZnO/CN, and Co-doped ZnO/CN nanocomposites demonstrated 100% dye treatment. The applicability of photocatalysts for decolorization of 250 mL of 10 mg/L RR120 prepared from actual wool textile wastewater was investigated, and the results showed that Co-doped ZnO/CN nanocomposites for treatment of RR120 from actual wool textile wastewater were highly efficient at photocatalytic degradation.


Subject(s)
Nanocomposites , Zinc Oxide , Water , Azo Compounds/chemistry , Zinc Oxide/chemistry , Wastewater , Nanocomposites/chemistry , Catalysis
2.
Chemosphere ; 336: 139012, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37224975

ABSTRACT

This work's goal was the fabrication of a graphene oxide-based nanocomposite biosensor for the determination of bevacizumab (BVZ) as a medicine for colorectal cancer in human serum and wastewater fluids. For the fabrication electrode, graphene oxide was electrodeposited on GCE (GO/GCE), and then DNA and monoclonal anti-bevacizumab antibodies were immobilized on the GO/GCE surface, respectively (Ab/DNA/GO/GCE). Structural characterization using XRD, SEM, and Raman spectroscopy confirmed the binding of DNA to GO nanosheets and the interaction of Ab with the DNA/GO array. Electrochemical characterization of Ab/DNA/GO/GCE using CV and DPV indicated immobilization of antibodies on DNA/GO/GCE and sensitive and selective behavior of modified electrodes for determination of BVZ. The linear range was obtained 10-1100 µg/mL, and the sensitivity and detection limit values were determined to be 0.14575 µA/µg.mL-1 and 0.02 µg/mL, respectively. To verify the applicability of the planned sensor for determination of BVZ in human serum and wastewater fluid specimens, the outcomes of DPV measurements using Ab, DNA, GO, and GCE and the results of the Bevacizumab ELISA Kit for determination of BVZ in prepared real specimens showed good conformity between the outcomes of both analyses. Moreover, the proposed sensor showed considerable assay precision with recoveries ranging from 96.00% to 98.90% and acceptable relative standard deviations (RSDs) below 5.11%, illustrating sufficiently good sensor accuracy and validity in the determination of BVZ in prepared real specimens of human serum and wastewater fluids. These outcomes demonstrated the feasibility of the proposed BVZ sensor in clinical and environmental assay applications.


Subject(s)
Biosensing Techniques , Colorectal Neoplasms , Graphite , Nanocomposites , Humans , Wastewater , Electrochemical Techniques/methods , Graphite/chemistry , Nanocomposites/chemistry , Electrodes , DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...