Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 14(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38248227

ABSTRACT

OBJECTIVE: To investigate the effect of vanillic acid (VA) on a Cuprizone (Cup) demyelinating rat model and the mechanisms behind such effect. METHODS: Thirty adult male Sprague Dawley (SD) rats were randomly divided into three groups: control, Cuprizone, and VA groups. Cuprizone was administrated at a dose of 450 mg/kg per day orally via gastric gavage for 5 weeks. The nerve conduction velocity (NCV) was studied in an isolated sciatic nerve, and then the sciatic nerve was isolated for histopathological examination, electron microscope examination, immunohistochemical staining, and biochemical and PCR assay. The level of IL17 was detected using ELISA, while the antioxidant genes Nrf2, HO-1 expression at the level of mRNA, expression of the myelin basic protein (MBP), interferon-gamma factor (INF)-γ and tumor necrosis factor (TNF)-α, and apoptotic marker (caspase-3) were measured using immunohistochemistry in the sciatic nerve. RESULTS: There was a significant reduction in NCV in Cup compared to normal rats (p < 0.001), which was markedly improved in the VA group (p < 0.001). EM and histopathological examination revealed significant demyelination and deterioration of the sciatic nerve fibers with significant improvement in the VA group. The level of IL17 as well as the expression of INF-γ and caspase-3 were significantly increased with a significant reduction in the expression of MBP, Nrf2, and HO-1 in the sciatic nerve (p < 0.01), and VA treatment significantly improved the studied parameters (p < 0.01). CONCLUSION: The current study demonstrated a neuroprotective effect for VA against the Cup-induced demyelinating rat model. This effect might be precipitated by the inhibition of inflammation, oxidative stress, and apoptosis.

2.
Article in English | MEDLINE | ID: mdl-33227644

ABSTRACT

Arachidonic acid (AA) and docosahexaenoic acid (DHA) are important for neurological development. The aim was to determine the distribution and relative enrichment of AA and DHA among lipoprotein fractions prior to pregnancy, throughout gestation and in the post-partum period. Our hypothesis was that in pregnancy, in contrast to the non-pregnant state, AA and DHA are carried in highest concentration in the very low density lipoprotein (VLDL) fraction secondary to increased gestational liver triglyceride secretion. Two independent prospective, observational cohort studies carried out in Glasgow were combined; one early in pregnancy and one later in pregnancy with post-partum follow up. Across the pregnancy timeline plasma lipoproteins were isolated using sequential ultracentrifugation and lipoprotein fatty acids were extracted and analysed by gas chromatography. High density lipoprotein (HDL) had the highest concentration of AA and DHA compared to other lipoproteins. HDL became progressively enriched in the proportion of triglycerides at 16 weeks of gestation, which peaked at 35 weeks and returned to baseline at 13 weeks postpartum. HDL DHA per HDL-cholesterol and HDL DHA per apoA-I became progressively enriched at 16 weeks of gestation, peaked at 25 weeks and returned to baseline at 13 weeks postpartum, whereas HDL AA (per HDL-C or HDL-apoA-I) did not differ. DHA is carried primarily in HDL rather than VLDL. HDL has anti-oxidant properties that might afford DHA protection against oxidation.


Subject(s)
Arachidonic Acid/blood , Docosahexaenoic Acids/blood , Gestational Age , Lipoproteins, HDL/blood , Lipoproteins, VLDL/blood , Pregnancy/blood , Adult , Female , Humans , Longitudinal Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...