Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 690: 426-437, 2019 Nov 10.
Article in English | MEDLINE | ID: mdl-31299575

ABSTRACT

The rapid environmental changes in Australia prompt a more thorough investigation of the influence of transportation, local emissions, and optical-chemical properties on aerosol production across the region. A month-long intensive measurement campaign was conducted during spring 2016 at Mission Beach, a remote coastal site west of the Great Barrier Reef (GBR) on the north-east coast of Australia. One aerosol pollution episode was investigated in early October. This event was governed by meteorological conditions and characterized by the increase in black carbon (BC) mass concentration (averaged value of 0.35 ±â€¯0.20 µg m-3). Under the influence of the continental transportation, a new layer of nucleation-mode aerosols with an initial size diameter of 20 nm was observed and aerosol number concentrations reached the peak of 6733 cm-3 at a diameter of 29 nm. The averaged aerosol extinction coefficient at the height of 2 km was 150 Mm-1, with a small depolarized ratio (3.5-5%). Simultaneously, the boundary layer height presented a fall-rise trend in the presence of these enhanced aerosol concentrations and became stable in a later stage of the episode. We did not observe clear boundary layer height diurnal variations from the LiDAR observations or from the Weather Research and Forecasting (WRF) model outputs, except in an earlier stage of the aerosol episode for the former. Although the sea breeze may have been responsible for these particles, on the balance of available data, we suggest that the aerosol properties at the GBR surface during this period are more likely influenced by regional transportation of continental sources, including biomass-burning aerosols.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Coral Reefs , Environmental Monitoring , Australia , Meteorology , Models, Theoretical , Weather
2.
Environ Pollut ; 243(Pt B): 1943-1951, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30327214

ABSTRACT

Particle emission characteristics and engine performance were investigated from an auxiliary, heavy duty, six-cylinder, turbocharged and after-cooled diesel engine with a common rail injection system using spiked fuels with different combinations of sulphur (S) and vanadium (V) spiking. The effect of fuel S content on both particle number (PN) and mass (PM) was clearly observed in this study. Higher PN and PM were observed for fuels with higher S contents at all engine load conditions. This study also found a correlation between fuel S content and nucleation mode particle number concentration which have more harmful impact on human health than larger particles. The highest PN and PM were observed at partial load conditions. In addition, S in fuel resulted in higher viscosity of spiked fuels, which led to lower engine blow-by. Fuel V content was observed in this study, evidencing that it had no clear effect on engine performance and emissions. Increased engine load also resulted in higher engine blow-by. The lower peak of in-cylinder pressure observed at both pre-mixed and diffusion combustion phases with the spiked fuels may be associated with the lower energy content in the fuel blends compared to diesel fuel.


Subject(s)
Gasoline/analysis , Particulate Matter/chemistry , Sulfur/analysis , Vanadium/analysis , Vehicle Emissions/analysis , Air Pollutants/analysis , Humans , Particulate Matter/analysis , Ships
3.
Environ Pollut ; 222: 175-181, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28069366

ABSTRACT

While the crushing of concrete gives rise to large quantities of coarse dust, it is not widely recognized that this process also emits significant quantities of ultrafine particles. These particles impact not just the environments within construction activities but those in entire urban areas. The origin of these ultrafine particles is uncertain, as existing theories do not support their production by mechanical processes. We propose a hypothesis for this observation based on the volatilisation of materials at the concrete fracture interface. The results from this study confirm that mechanical methods can produce ultrafine particles (UFP) from concrete, and that the particles are volatile. The ultrafine mode was only observed during concrete fracture, producing particle size distributions with average count median diameters of 27, 39 and 49 nm for the three tested concrete samples. Further volatility measurements found that the particles were highly volatile, showing between 60 and 95% reduction in the volume fraction remaining by 125 °C. An analysis of the volatile fraction remaining found that different volatile material is responsible for the production of particles between the samples.


Subject(s)
Air Pollutants/analysis , Construction Materials/analysis , Particle Size , Particulate Matter/analysis , Dust/analysis , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...