Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(12): e32849, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975106

ABSTRACT

The deployment of resource-constrained and densely distributed Internet of Things (IoT) devices poses significant challenges for 5G communication systems due to the increased likelihood of inter-tier interference. This interference can degrade network performance and hinder the transmission of data in a reliable and efficient manner. Using an incremental Radial Basis Function (RBF) technique, this paper proposes a novel approach for cross-tier interference mitigation in 5G communication among resource-constrained dense IoT networks. Utilizing the incremental RBF method to model and optimize interference patterns in resource-constrained dense IoT networks is the primary innovation of our approach. In contrast to conventional interference mitigation techniques, which view interference as a static phenomenon, our method adapts to the dynamic nature of IoT networks by incrementally updating the RBF model. This enables precise modeling of the various interference scenarios and real-time modification of interference mitigation parameters. Utilizing the spatial distribution of IoT devices, this approach improves interference mitigation. The proposed method intelligently allocates resources and optimizes interference mitigation parameters based on the location and density of IoT devices. This adaptive resource allocation improves network capacity, reliability, and overall system performance by maximizing the utilization of available resources while minimizing interference. We demonstrate the effectiveness of the incremental RBF-based approach in mitigating cross-tier interference in resource-constrained dense IoT networks within the 5G ecosystem through extensive experiments and simulations. Our findings indicate substantial improvements in communication performance, including increased throughput, decreased packet loss, and decreased latency.

2.
Sensors (Basel) ; 23(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37896627

ABSTRACT

The involvement of wireless sensor networks in large-scale real-time applications is exponentially growing. These applications can range from hazardous area supervision to military applications. In such critical contexts, the simultaneous improvement of the quality of service and the network lifetime represents a big challenge. To meet these requirements, using multiple mobile sinks can be a key solution to accommodate the variations that may affect the network. Recent studies were based on predefined mobility models for sinks and relied on multi-hop routing techniques. Besides, most of these studies focused only on improving energy consumption without considering QoS metrics. In this paper, multiple mobile sinks with random mobile models are used to establish a tradeoff between power consumption and the quality of service. The simulation results show that using hierarchical data routing with random mobile sinks represents an efficient method to balance the distribution of the energy levels of nodes and to reduce the overall power consumption. Moreover, it is proven that the proposed routing methods allow for minimizing the latency of the transmitted data, increasing the reliability, and improving the throughput of the received data compared to recent works, which are based on predefined trajectories of mobile sinks and multi-hop architectures.

3.
Diagnostics (Basel) ; 12(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36010231

ABSTRACT

In December 2019, the novel coronavirus disease 2019 (COVID-19) appeared. Being highly contagious and with no effective treatment available, the only solution was to detect and isolate infected patients to further break the chain of infection. The shortage of test kits and other drawbacks of lab tests motivated researchers to build an automated diagnosis system using chest X-rays and CT scanning. The reviewed works in this study use AI coupled with the radiological image processing of raw chest X-rays and CT images to train various CNN models. They use transfer learning and numerous types of binary and multi-class classifications. The models are trained and validated on several datasets, the attributes of which are also discussed. The obtained results of various algorithms are later compared using performance metrics such as accuracy, F1 score, and AUC. Major challenges faced in this research domain are the limited availability of COVID image data and the high accuracy of the prediction of the severity of patients using deep learning compared to well-known methods of COVID-19 detection such as PCR tests. These automated detection systems using CXR technology are reliable enough to help radiologists in the initial screening and in the immediate diagnosis of infected individuals. They are preferred because of their low cost, availability, and fast results.

SELECTION OF CITATIONS
SEARCH DETAIL
...