Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 20(7): e46885, 2019 07.
Article in English | MEDLINE | ID: mdl-31267703

ABSTRACT

Autophagy is a highly regulated catabolic pathway that is potently induced by stressors including starvation and infection. An essential component of the autophagy pathway is an ATG16L1-containing E3-like enzyme, which is responsible for lipidating LC3B and driving autophagosome formation. ATG16L1 polymorphisms have been linked to the development of Crohn's disease (CD), and phosphorylation of CD-associated ATG16L1 T300A (caATG16L1) has been hypothesized to contribute to cleavage and autophagy dysfunction. Here we show that ULK1 kinase directly phosphorylates ATG16L1 in response to infection and starvation. Phosphorylated ATG16L1 localizes to the site of internalized bacteria and stable cell lines harbouring a phospho-dead mutant of ATG16L1 have impaired xenophagy, indicating a role for ATG16L1 phosphorylation in the promotion of anti-bacterial autophagy. In contrast to wild-type ATG16L1, ULK1-mediated phosphorylation of caATG16L1 drives its destabilization in response to stress. In summary, our results show that ATG16L1 is a novel target of ULK1 kinase and that ULK1 signalling to ATG16L1 is a double-edged sword, enhancing the function of the wild-type ATG16L1, but promoting degradation of caATG16L1.


Subject(s)
Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Proteins/metabolism , Crohn Disease/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Macroautophagy , Mutation , Animals , Autophagy-Related Proteins/genetics , HCT116 Cells , HEK293 Cells , Humans , Mice , Phosphorylation , Protein Stability , Stress, Physiological
2.
Cell Rep ; 26(8): 2150-2165.e5, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30784596

ABSTRACT

The autophagy pathway is an essential facet of the innate immune response, capable of rapidly targeting intracellular bacteria. However, the initial signaling regulating autophagy induction in response to pathogens remains largely unclear. Here, we report that AMPK, an upstream activator of the autophagy pathway, is stimulated upon detection of pathogenic bacteria, before bacterial invasion. Bacterial recognition occurs through the detection of outer membrane vesicles. We found that AMPK signaling relieves mTORC1-mediated repression of the autophagy pathway in response to infection, positioning the cell for a rapid induction of autophagy. Moreover, activation of AMPK and inhibition of mTORC1 in response to bacteria is not accompanied by an induction of bulk autophagy. However, AMPK signaling is required for the selective targeting of bacteria-containing vesicles by the autophagy pathway through the activation of pro-autophagic kinase complexes. These results demonstrate a key role for AMPK signaling in coordinating the rapid autophagic response to bacteria.


Subject(s)
Autophagy-Related Protein-1 Homolog/metabolism , Bacterial Outer Membrane/metabolism , Class III Phosphatidylinositol 3-Kinases/metabolism , Macroautophagy , Protein Kinases/metabolism , AMP-Activated Protein Kinase Kinases , Animals , Cells, Cultured , HCT116 Cells , HEK293 Cells , Host-Pathogen Interactions , Humans , MCF-7 Cells , Macrophages/metabolism , Macrophages/microbiology , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred NOD , Salmonella/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...