Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 314: 137667, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36581127

ABSTRACT

Fibrous filter made up of non-woven material was utilized in many industrial applications for increasing the collection efficiency and the quality factor. But there exists a competing effect among the fibre diameter, filtration efficiency, pressure drop, and sometime type of aerosol (liquid or solid) plays a crucial role in the performance of the fibrous filter. To avoid overdesigning of the filter along with better performance, optimum set of parameters are to be decided before the manufacturing process. In the current effort, the desirability approach and along with the "Response Surface Methodology (RSM)" were considered to optimize filtration efficiency and pressure drop simultaneously. In this perspective, the impact of Filtration velocity (v), Basis weight (φ), Particle diameter (dp), and Packing fraction (α) on filtration efficiency (η) and pressure drop (Pd) was studied. Based on the outcome, the predicted values lie within experimental data through smart agreement. The maximum percentage (%) error was only 3% and 6% filtration efficiency (η) and pressure drop (Pd), which determine the effectiveness of this useful model. The most dominant factor which affects the filtration efficiency (η) was found to be the Basis weight (φ), followed by packing fraction. However, in the case of pressure drop, the most dominant factors were filtration speed followed by the pachining fraction. Moreover, artificial neural network (ANN) models are developed for the prediction of filtration efficiency and pressure drop. The model accuracy has been estimated by calculating "Mean Square Error (MSE), Mean Absolute Error (MAE), and coefficient of determination (R2)". Both models show promising results when compared with experimental data with the R2 value of 98.50-99.86. The optimized values of the maximum filtration efficiency and minimum pressure drop simultaneously were obtained for v = 5, φ = 59.60, dp = 52.23, α = 0.24 according to desirability approach.


Subject(s)
Filtration , Neural Networks, Computer , Aerosols
2.
Chemosphere ; 286(Pt 2): 131690, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34352553

ABSTRACT

The experimental determination of thermophysical properties of nanofluid (NF) is time-consuming and costly, leading to the use of soft computing methods such as response surface methodology (RSM) and artificial neural network (ANN) to estimate these properties. The present study involves modelling and optimization of thermal conductivity and viscosity of NF, which comprises multi-walled carbon nanotubes (MWCNTs) and thermal oil. The modelling is performed to predict the thermal conductivity and viscosity of NF by using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Both models were tested and validated, which showed promising results. In addition, a detailed optimization study was conducted to investigate the optimum thermal conductivity and viscosity by varying temperature and NF weight per cent. Four case studies were explored using different objective functions based on NF application in various industries. The first case study aimed to maximize thermal conductivity (0.15985 W/m oC) while minimizing viscosity (0.03501 Pa s) obtained at 57.86 °C and 0.85 NF wt%. The goal of the second case study was to minimize thermal conductivity (0.13949 W/m °C) and viscosity (0.02526 Pa s) obtained at 55.88 °C and 0.15 NF wt%. The third case study targeted maximizing thermal conductivity (0.15797 W/m °C) and viscosity (0.07611 Pa s), and the optimum temperature and NF wt% were 30.64 °C and 0.0.85,' respectively. The last case study explored the minimum thermal conductivity (0.13735) and maximum viscosity (0.05263 Pa s) obtained at 30.64 °C and 0.15 NF wt%.


Subject(s)
Nanotubes, Carbon , Temperature , Thermal Conductivity , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...