Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cureus ; 16(5): e60145, 2024 May.
Article in English | MEDLINE | ID: mdl-38864072

ABSTRACT

Chronic kidney disease (CKD) is a progressive condition characterized by gradual loss of kidney function, necessitating timely monitoring and interventions. This systematic review comprehensively evaluates the application of artificial intelligence (AI) and machine learning (ML) techniques for predicting CKD progression. A rigorous literature search identified 13 relevant studies employing diverse AI/ML algorithms, including logistic regression, support vector machines, random forests, neural networks, and deep learning approaches. These studies primarily aimed to predict CKD progression to end-stage renal disease (ESRD) or the need for renal replacement therapy, with some focusing on diabetic kidney disease progression, proteinuria, or estimated glomerular filtration rate (GFR) decline. The findings highlight the promising predictive performance of AI/ML models, with several achieving high accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve scores. Key factors contributing to enhanced prediction included incorporating longitudinal data, baseline characteristics, and specific biomarkers such as estimated GFR, proteinuria, serum albumin, and hemoglobin levels. Integration of these predictive models with electronic health records and clinical decision support systems offers opportunities for timely risk identification, early interventions, and personalized management strategies. While challenges related to data quality, bias, and ethical considerations exist, the reviewed studies underscore the potential of AI/ML techniques to facilitate early detection, risk stratification, and targeted interventions for CKD patients. Ongoing research, external validation, and careful implementation are crucial to leveraging these advanced analytical approaches in clinical practice, ultimately improving outcomes and reducing the burden of CKD.

2.
Cureus ; 16(3): e56668, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38646209

ABSTRACT

Enhanced recovery after surgery (ERAS) protocols have transformed perioperative care by implementing evidence-based strategies to hasten patient recovery, decrease complications, and shorten hospital stays. However, challenges such as inconsistent adherence and the need for personalized adjustments persist, prompting exploration into innovative solutions. The emergence of artificial intelligence (AI) and machine learning (ML) offers a promising avenue for optimizing ERAS protocols. While ERAS emphasizes preoperative optimization, minimally invasive surgery (MIS), and standardized postoperative care, challenges such as adherence variability and resource constraints impede its effectiveness. AI/ML technologies offer opportunities to overcome these challenges by enabling real-time risk prediction, personalized interventions, and efficient resource allocation. AI/ML applications in ERAS extend to patient risk stratification, personalized care plans, and outcome prediction. By analyzing extensive patient datasets, AI/ML algorithms can predict individual patient risks and tailor interventions accordingly. Moreover, AI/ML facilitates proactive interventions through predictive modeling of postoperative outcomes, optimizing resource allocation, and enhancing patient care. Despite the potential benefits, integrating AI and ML into ERAS protocols faces obstacles such as data access, ethical considerations, and healthcare professional training. Overcoming these challenges requires a human-centered approach, fostering collaboration among clinicians, data scientists, and patients. Transparent communication, robust cybersecurity measures, and ethical model validation are crucial for successful integration. It is essential to ensure that AI and ML complement rather than replace human expertise, with clinicians maintaining oversight and accountability.

3.
Cureus ; 15(11): e49082, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38125253

ABSTRACT

This comprehensive exploration unveils the transformative potential of Artificial Intelligence (AI) within medicine and surgery. Through a meticulous journey, we examine AI's current applications in healthcare, including medical diagnostics, surgical procedures, and advanced therapeutics. Delving into the theoretical foundations of AI, encompassing machine learning, deep learning, and Natural Language Processing (NLP), we illuminate the critical underpinnings supporting AI's integration into healthcare. Highlighting the symbiotic relationship between humans and machines, we emphasize how AI augments clinical capabilities without supplanting the irreplaceable human touch in healthcare delivery. Also, we'd like to briefly mention critical findings and takeaways they can expect to encounter in the article. A thoughtful analysis of the economic, societal, and ethical implications of AI's integration into healthcare underscores our commitment to addressing critical issues, such as data privacy, algorithmic transparency, and equitable access to AI-driven healthcare services. As we contemplate the future landscape, we project an exciting vista where more sophisticated AI algorithms and real-time surgical visualizations redefine the boundaries of medical achievement. While acknowledging the limitations of the present research, we shed light on AI's pivotal role in enhancing patient engagement, education, and data security within the burgeoning realm of AI-driven healthcare.

4.
Cureus ; 15(11): e49249, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38143618

ABSTRACT

The landscape of cancer treatment has witnessed a remarkable transformation in recent years, marked by the convergence of medical and surgical innovations. Historically, cancer therapy faced challenges, including limited efficacy and severe side effects. This narrative review explores the historical progression of cancer treatments, shedding light on significant breakthroughs in both medical and surgical oncology. It comprehensively addresses the medical domain, covering chemotherapy, targeted therapies, immunotherapy, hormonal treatments, and radiological procedures. Simultaneously, it delves into the surgical realm, discussing the evolution of surgical techniques, minimally invasive procedures, and the role of surgery across various stages of cancer. The article emphasizes the fusion of medical and surgical approaches, highlighting neoadjuvant and adjuvant therapies and the significance of multidisciplinary tumor boards. It also addresses innovations, challenges, and the pivotal role of patient-centered care. Furthermore, it offers insights into the future directions and forecasts in the constantly evolving field of integrated oncological care. This review provides a comprehensive understanding of the dynamic and transformative nature of cancer treatment, reflecting the unwavering commitment of the medical and surgical communities in the ongoing fight against cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...