Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Ecol Lett ; 27(5): e14415, 2024 May.
Article in English | MEDLINE | ID: mdl-38712683

ABSTRACT

The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.


Subject(s)
Plant Leaves , Carbon Cycle , Carbon/metabolism
2.
Chemosphere ; 357: 142028, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621494

ABSTRACT

Nickel (Ni) contamination poses a serious environmental concern, particularly in developing countries: where, anthropogenic activities significantly contributes to Ni accumulations in soils and waters. The contamination of agricultural soils with Ni, increases risks of its entry to terrestrial ecosystems and food production systems posing a threat to both food security and safety. We examined the existing published articles regarding the origin, source, accumulation, and transport of Ni in soil environments. Particularly, we reviewed the bioavailability and toxic effects of Ni to soil invertebrates and microbes, as well as its impact on soil-plant interactions including seed germination, nutrient uptake, photosynthesis, oxidative stress, antioxidant enzyme activity, and biomass production. Moreover, it underscores the potential health hazards associated with consuming crops cultivated in Ni-contaminated soils and elucidates the pathways through which Ni enters the food chain. The published literature suggests that chronic Ni exposure may have long-term implications for the food supply chain and the health of the public. Therefore, an aggressive effort is required for interdisciplinary collaboration for assessing and mitigating the ecological and health risks associated with Ni contamination. It also argues that these measures are necessary in light of the increasing level of Ni pollution in soil ecosystems and the potential impacts on public health and the environment.


Subject(s)
Nickel , Plants , Soil Microbiology , Soil Pollutants , Nickel/toxicity , Nickel/analysis , Soil Pollutants/toxicity , Soil Pollutants/analysis , Humans , Plants/drug effects , Plants/metabolism , Ecosystem , Soil/chemistry , Environmental Monitoring
3.
Front Microbiol ; 15: 1362722, 2024.
Article in English | MEDLINE | ID: mdl-38646634

ABSTRACT

Date palm cultivation has thrived in the Gulf Cooperation Council region since ancient times, where it represents a vital sector in agricultural and socio-economic development. However, climate change conditions prevailing for decades in this area, next to rarefication of rain, hot temperatures, intense evapotranspiration, rise of sea level, salinization of groundwater, and intensification of cultivation, contributed to increase salinity in the soil as well as in irrigation water and to seriously threaten date palm cultivation sustainability. There are also growing concerns about soil erosion and its repercussions on date palm oases. While several reviews have reported on solutions to sustain date productivity, including genetic selection of suitable cultivars for the local harsh environmental conditions and the implementation of efficient management practices, no systematic review of the desertic plants' below-ground microbial communities and their potential contributions to date palm adaptation to climate change has been reported yet. Indeed, desert microorganisms are expected to address critical agricultural challenges and economic issues. Therefore, the primary objectives of the present critical review are to (1) analyze and synthesize current knowledge and scientific advances on desert plant-associated microorganisms, (2) review and summarize the impacts of their application on date palm, and (3) identify possible gaps and suggest relevant guidance for desert plant microbes' inoculation approach to sustain date palm cultivation within the Gulf Cooperation Council in general and in Qatar in particular.

4.
Nutrients ; 15(19)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37836560

ABSTRACT

Breast cancer (BC) is the most common malignancy, and conventional medicine has failed to establish efficient treatment modalities. Conventional medicine failed due to lack of knowledge of the mechanisms that underpin the onset and metastasis of tumors, as well as resistance to treatment regimen. However, Complementary and Alternative medicine (CAM) modalities are currently drawing the attention of both the public and health professionals. Our study examined the effect of a super-combination (SC) of crude extracts, which were isolated from three selected Qatari medicinal plants, on the proliferation, motility and death of BC cells. Our results revealed that SC attenuated cell growth and caused the cell death of MDA-MB-231 cancer cells when compared to human normal neonatal fibroblast cells. On the other hand, functional assays showed that SC reduced BC cell migration and invasion, respectively. SC-inhibited cell cycle and SC-regulated apoptosis was most likely mediated by p53/p21 pathway and p53-regulated Bax/BCL-2/Caspace-3 pathway. Our ongoing experiments aim to validate these in vitro findings in vivo using a BC-Xenograft mouse model. These findings support our hypothesis that SC inhibited BC cell proliferation and induced apoptosis. These findings lay the foundation for further experiments, aiming to validate SC as an effective chemoprevention and/or chemotherapeutic strategy that can ultimately pave the way towards translational research/clinical trials for the eradication of BC.


Subject(s)
Breast Neoplasms , Plants, Medicinal , Infant, Newborn , Humans , Animals , Mice , Female , Breast Neoplasms/metabolism , Tumor Suppressor Protein p53 , Cell Line, Tumor , Apoptosis , Cell Proliferation , Cell Movement
5.
Microorganisms ; 11(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37317222

ABSTRACT

Abiotic and biotic stresses such as salt stress and fungal infections significantly affect plant growth and productivity, leading to reduced crop yield. Traditional methods of managing stress factors, such as developing resistant varieties, chemical fertilizers, and pesticides, have shown limited success in the presence of combined biotic and abiotic stress factors. Halotolerant bacteria found in saline environments have potential as plant promoters under stressful conditions. These microorganisms produce bioactive molecules and plant growth regulators, making them a promising agent for enhancing soil fertility, improving plant resistance to adversities, and increasing crop production. This review highlights the capability of plant-growth-promoting halobacteria (PGPH) to stimulate plant growth in non-saline conditions, strengthen plant tolerance and resistance to biotic and abiotic stressors, and sustain soil fertility. The major attempted points are: (i) the various abiotic and biotic challenges that limit agriculture sustainability and food safety, (ii) the mechanisms employed by PGPH to promote plant tolerance and resistance to both biotic and abiotic stressors, (iii) the important role played by PGPH in the recovery and remediation of agricultural affected soils, and (iv) the concerns and limitations of using PGHB as an innovative approach to boost crop production and food security.

6.
Front Plant Sci ; 13: 995825, 2022.
Article in English | MEDLINE | ID: mdl-36262661

ABSTRACT

In vitro plant cell and tissue cultures are potent tools to propagating germplasm resources in conserving and managing plant genetic resources. A reliable micropropagation protocol was developed for efficient callus proliferation and direct and indirect shoot regeneration of Meseika (Haplophyllum tuberculatum). With the applied sterilization procedure, immature, unopened H. tuberculatum seed pods can be identified as a potent explant with high viability and low contamination percentage. Multiple shoots were regenerated from leaf and stem explants through direct organogenesis on Murashige and Skoog's (MS) + 3% sucrose medium amended with BAP. Indirect regeneration of several shoots was achieved on 1/2 MS + 1% sucrose media amended with 2 and 4 mg/l BAP. An efficient callus proliferation from both explants can be achieved by supplementing the MS media with NAA and BAP. All the cultures were incubated in a controlled growth chamber under 5/19 h light/dark photoperiod, temperature (25 ± 2°C), and 60% relative humidity (RH).10 ISSR (Inter Simple Sequence Repeat) markers were screened to test the genetic fidelity of regenerated H. tuberculatum shoots. Callus development was observed after 15 days and shoot regeneration was occurred after 30 days after callus initiation. 10 ISSR primers produced a total of 39 clear, distinct amplicons. 75, 60, 40, and 16% polymorphism percentages were recorded by the ISSR primer 11, 7, 5, and 4, respectively. The developed micropropagation protocol is appropriate for rapid in-vitro multiplication of H. tuberculatum shoots and callus.

7.
Front Plant Sci ; 13: 1033092, 2022.
Article in English | MEDLINE | ID: mdl-36275511

ABSTRACT

Zinc (Zn), which is regarded as a crucial micronutrient for plants, and is considered to be a vital micronutrient for plants. Zn has a significant role in the biochemistry and metabolism of plants owing to its significance and toxicity for biological systems at specific Zn concentrations, i.e., insufficient or harmful above the optimal range. It contributes to several cellular and physiological activities of plants and promotes plant growth, development, and yield. Zn is an important structural, enzymatic, and regulatory component of many proteins and enzymes. Consequently, it is essential to understand the interplay and chemistry of Zn in soil, its absorption, transport, and the response of plants to Zn deficiency, as well as to develop sustainable strategies for Zn deficiency in plants. Zn deficiency appears to be a widespread and prevalent issue in crops across the world, resulting in severe production losses that compromise nutritional quality. Considering this, enhancing Zn usage efficiency is the most effective strategy, which entails improving the architecture of the root system, absorption of Zn complexes by organic acids, and Zn uptake and translocation mechanisms in plants. Here, we provide an overview of various biotechnological techniques to improve Zn utilization efficiency and ensure the quality of crop. In light of the current status, an effort has been made to further dissect the absorption, transport, assimilation, function, deficiency, and toxicity symptoms caused by Zn in plants. As a result, we have described the potential information on diverse solutions, such as root structure alteration, the use of biostimulators, and nanomaterials, that may be used efficiently for Zn uptake, thereby assuring sustainable agriculture.

8.
Ecotoxicol Environ Saf ; 243: 113969, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35969983

ABSTRACT

Soil contamination with cadmium (Cd) is a persistent threat to crop production worldwide. The present study examined the putative roles of nitric oxide (NO) in improving Cd-tolerance in cauliflower (Brassica oleracea L.). The present study was conducted using four different genotypes of B. oleracea named as FD-3, FD-4, FD-2 and Ceilo Blanco which were subjected to the Cd stress at various concentrations i.e., 0, 5, 10 and 20 µM with or without the application of NO i.e., 0.10 mM in the sand containing nutrient Hoagland's solution. Our results illustrated that the increasing levels of Cd in the sand, significantly (P < 0.05) decreased shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, germination percentage, germination index, mean germination time, time to 50% germination, chlorophyll a, chlorophyll b, total chlorophyll and carotenoid contents in all genotypes of B. oleracea. The concentration of malondialdehyde (MDA) and Cd accumulation (roots and shoots) increased significantly (P < 0.05) under the increasing levels of Cd in all genotypes of B. oleracea while antioxidant (enzymatic or non-enzymatic) capacity and nutritional status of the plants was decreased with varying levels of Cd in the sand. From all studied genotypes of B. oleracea, Ceilo Blanco and FD-4 was found to be most sensitive species to the Cd stress under the same levels of the Cd in the medium while FD-2 and FD-3 showed more tolerance to the Cd stress compared to all other genotypes of B. oleracea. Although, toxic effect of Cd in the sand can overcome by the application of NO which not only increased plant growth and nutrients accumulation but also decreased the oxidative damage to the membranous bounded organelles and also Cd accumulation in various parts of the plants in all genotypes of B. oleracea. Hence, it was concluded that application of NO can overcome Cd toxicity in B. oleracea by maintaining the growth regulation and nutritional status of the plant and overcome oxidative damage induced by Cd toxicity in all genotypes of B. oleracea.


Subject(s)
Brassica , Soil Pollutants , Antioxidants/pharmacology , Brassica/genetics , Cadmium/toxicity , Chlorophyll A , Nitric Oxide/pharmacology , Plant Roots , Sand , Soil Pollutants/toxicity
9.
Front Plant Sci ; 13: 881242, 2022.
Article in English | MEDLINE | ID: mdl-35646026

ABSTRACT

Potentially toxic elements (PTEs) such as cadmium (Cd), lead (Pb), chromium (Cr), and arsenic (As), polluting the environment, pose a significant risk and cause a wide array of adverse changes in plant physiology. Above threshold accumulation of PTEs is alarming which makes them prone to ascend along the food chain, making their environmental prevention a critical intervention. On a global scale, current initiatives to remove the PTEs are costly and might lead to more pollution. An emerging technology that may help in the removal of PTEs is phytoremediation. Compared to traditional methods, phytoremediation is eco-friendly and less expensive. While many studies have reported several plants with high PTEs tolerance, uptake, and then storage capacity in their roots, stem, and leaves. However, the wide application of such a promising strategy still needs to be achieved, partly due to a poor understanding of the molecular mechanism at the proteome level controlling the phytoremediation process to optimize the plant's performance. The present study aims to discuss the detailed mechanism and proteomic response, which play pivotal roles in the uptake of PTEs from the environment into the plant's body, then scavenge/detoxify, and finally bioaccumulate the PTEs in different plant organs. In this review, the following aspects are highlighted as: (i) PTE's stress and phytoremediation strategies adopted by plants and (ii) PTEs induced expressional changes in the plant proteome more specifically with arsenic, cadmium, copper, chromium, mercury, and lead with models describing the metal uptake and plant proteome response. Recently, interest in the comparative proteomics study of plants exposed to PTEs toxicity results in appreciable progress in this area. This article overviews the proteomics approach to elucidate the mechanisms underlying plant's PTEs tolerance and bioaccumulation for optimized phytoremediation of polluted environments.

10.
Plants (Basel) ; 11(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35684174

ABSTRACT

The excessive use of nickel (Ni) in manufacturing and various industries has made Ni a serious pollutant in the past few decades. As a micronutrient, Ni is crucial for plant growth at low concentrations, but at higher concentrations, it can hamper growth. We evaluated the effects of Ni concentrations on nitrate (NO3-) and ammonium (NH4+) concentrations, and nitrogen metabolism enzyme activity in rice seedlings grown in hydroponic systems, using different Ni concentrations. A Ni concentration of 200 µM significantly decreased the NO3- concentration in rice leaves, as well as the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthetase (GOGAT), respectively, when compared to the control. By contrast, the NH4+ concentration and glutamate dehydrogenase (GDH) activity both increased markedly by 48% and 46%, respectively, compared with the control. Furthermore, the activity of most active aminotransferases, including glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT), was inhibited by 48% and 36%, respectively, in comparison with the control. The results indicate that Ni toxicity causes the enzymes involved in N assimilation to desynchronize, ultimately negatively impacting the overall plant growth.

11.
Life (Basel) ; 12(4)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35455085

ABSTRACT

Zinc (Zn) is plant micronutrient, which is involved in many physiological functions, and an inadequate supply will reduce crop yields. Its deficiency is the widest spread micronutrient deficiency problem; almost all crops and calcareous, sandy soils, as well as peat soils and soils with high phosphorus and silicon content are expected to be deficient. In addition, Zn is essential for growth in animals, human beings, and plants; it is vital to crop nutrition as it is required in various enzymatic reactions, metabolic processes, and oxidation reduction reactions. Finally, there is a lot of attention on the Zn nanoparticles (NPs) due to our understanding of different forms of Zn, as well as its uptake and integration in the plants, which could be the primary step toward the larger use of NPs of Zn in agriculture. Nanotechnology application in agriculture has been increasing over recent years and constitutes a valuable tool in reaching the goal of sustainable food production worldwide. A wide array of nanomaterials has been used to develop strategies of delivery of bioactive compounds aimed at boosting the production and protection of crops. ZnO-NPs, a multifunctional material with distinct properties and their doped counterparts, were widely being studied in different fields of science. However, its application in environmental waste treatment and many other managements, such as remediation, is starting to gain attention due to its low cost and high productivity. Nano-agrochemicals are a combination of nanotechnology with agrochemicals that have resulted in nano-fertilizers, nano-herbicides, nano-fungicides, nano-pesticides, and nano-insecticides being developed. They have anti-bacterial, anti-fungal, anti-inflammatory, antioxidant, and optical capabilities. Green approaches using plants, fungi, bacteria, and algae have been implemented due to the high rate of harmful chemicals and severe situations used in the manufacturing of the NPs. This review summarizes the data on Zn interaction with plants and contributes towards the knowledge of Zn NPs and its impact on plants.

12.
Mycorrhiza ; 31(6): 685-697, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34554321

ABSTRACT

Qatar is largely characterized by a hyper-arid climate and low soil fertility which create a stressful soil environment for arbuscular mycorrhizal (AM) fungi. In a study of AM fungal communities and their relationship with soil chemical characteristics, we used a high-throughput sequencing technique to explore AM fungal diversity and community composition in different habitats across Qatar. We identified a total of 79 AM fungal taxa, over 77% of which were species from the Glomeraceae family. The lowest AM fungal diversity was observed in saltmarsh and in one rawdha site, while the highest richness, effective number of species, and diversity were observed in rawdha and sabkha communities. NMDS and multiple regression analyses showed that AM fungi were negatively correlated with soil pH and TC, but positively correlated with K and NO3-. AM fungi also were positively correlated with Cd, with the latter suggesting that very low levels of heavy metals may not always be harmful to AM fungi. These findings provide baseline information on AM fungal assemblages and the chemical drivers of diversity across communities in Qatar. This work partly compensates for the current lack of broad-scale studies in the Arabian Peninsula by providing understanding of overall patterns of AM fungi and their drivers in the region.


Subject(s)
Mycobiome , Mycorrhizae , Ecosystem , Fungi/genetics , Soil , Soil Microbiology
13.
Toxics ; 9(2)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673174

ABSTRACT

In recent years, Qatar has witnessed exponential growth in the human population, urbanization, and increased anthropogenic activities, including agriculture. Potentially toxic environmental contaminants, including metals and metalloids, are commonly found in emerging economies. At high concentrations, elements such as As, Cr, and Ni can be hazardous and may lead to various health problems in humans, including cancer. The current study measured As, Cd, Cr, Cu, Ni, Pb, V, and Zn concentrations in agricultural soils. Pollution levels and potential negative impacts on human and environmental health were determined using the United States Environmental Protection Agency (USEPA) standard methodologies. According to the study's findings, the studied element concentrations descended in the following order: Zn > Cr > V > Ni > As > Cu > Pb > Cd. Of these, As (27.6 mg/kg), Cr (85.7 mg/kg), Ni (61.9 mg/kg), and Zn (92.3 mg/kg) concentrations were higher than average world background levels. Each of these elements also had an enrichment factor (EF > 1), indicating their anthropogenic origin. The combined pollution load index (PLI > 1) and geo-accumulation index (Igeo) range values of -0.2-2.5 further indicated that the soil was up to 58% polluted. However, the ecological risk factor (Er ≤ 40.6) and potential ecological risk index (PERI = 79.6) suggested low ecological risk. A human health risk evaluation showed that only As, with a hazard index (HI) of 1.3, posed a noncarcinogenic risk to infants. Additionally, As, Cr, and Ni, with total carcinogenic risk (TCR) values of 1.18 × 10-4 and 2.06 × 10-4 for adults and children, respectively, proved carcinogenic to both age groups. The elements' carcinogenic risk (CR) potential descended in the following order: Ni > As > Cr. Additionally, for both adults and children, oral ingestion is the most likely exposure pathway. Our findings support the need for closer monitoring of potentially toxic metals and metalloids levels in cultivated soils and farm produce in Qatar. Reducing the elements' bioavailability in soil and developing innovative remediation technologies is needed to limit potential risks to human health. Further studies on As, Cr, and Ni gastrointestinal bioaccessibilities are needed to fully understand the effects after long-term exposure and the cancer-causing potential of these elements over a lifetime.

14.
Heliyon ; 6(10): e05003, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33163639

ABSTRACT

Bacillus thuringiensis (Bt) is a Gram-positive soil bacterium that has been recognized as an effective bioinsecticide active against plant, animal and human pathogenic and disease vector insects. During its sporulation phase, Bt produces crystals consisting of δ-endotoxins, which upon ingestion kill specifically insect larvae. Bt subsp. israelensis (Bti) is very active against dipteran insects. Bti based bioinsecticides are considered as a sustainable solution to control the Dipteran insects responsible of plant, animal and human diseases. In this study, Bti strains isolated from Qatar soil were analyzed for their insecticidal activities against the dipteran insect Aedes aegypti Bora Bora (Culicidae, Diptera) and for their δ-endotoxins yields per cell. Among the local Bti strains, four exceptional strains producing spherical crystals, were found to be more insecticidal than the reference strain Bti H14. When tested for their δ-endotoxin yield, the Bti QBT217 strain, producing typical spherical crystals and having the best insecticidal activity, was recognized as the best candidate strain for potential bioinsecticide production and biological control of dipteran insects, particularly the disease vector insect A. aegypti.

15.
Front Plant Sci ; 11: 883, 2020.
Article in English | MEDLINE | ID: mdl-32636868

ABSTRACT

Progressive pollution due to toxic metals significantly undermines global environmental sustainability efforts. Chromium (Cr) is one of the most dangerous to human health. The use of plants to rid the environment of such pollutants "phytoremediation" proves to be a promising alternative to the current remediation methods. In the present study, inductively coupled plasma optical emission spectroscopy (ICP-OES) determined Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), and Lead (Pb) concentrations in the soil, and plants (Atriplex leucoclada, Calotropis procera, Salsola imbricata, Typha augustifolia, and Phragmites australis) root and shoots. Results showed that compared to other studied metals, Cr concentration was the highest in the soil at 111.8 mg/kg, whereas Cd records the least concentration of 0.04 mg/kg. Cr also accumulated in higher concentration in C. procera than in the soil and other plants, with up to 188.2 and 68.2 mg/kg concentration in the root and shoot, respectively. In order to understand the mechanism of Cr tolerance and uptake in C. procera, germinated seeds were irrigated with 20 mg/kg Cr and control treatment (no Cr applied) for six (6) weeks under greenhouse conditions. Fourier transformed infrared spectroscopy (FTIR) results showed high Cr complexation and binding to C. procera tissues via hydroxyl and carboxylic groups. Enzymatic assay reveals increased activities of superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) in Cr treated C. procera than in the control. SOD activity increased by up to six (6) folds. Therefore, we conclude that C. procera is suitable for the phytoremediation of Cr polluted arid soil. Additionally, regulation of cellular homeostasis via redox signaling is essential to the Cr tolerance and detoxification mechanism.

16.
J Cancer ; 11(15): 4521-4533, 2020.
Article in English | MEDLINE | ID: mdl-32489469

ABSTRACT

Conventional therapies for cancer treatment have posed many challenges, including toxicity, multidrug resistance and economic expenses. In contrast, complementary alternative medicine (CAM), employing phytochemicals have recently received increased attention owing to their capability to modulate a myriad of molecular mechanisms with a less toxic effect. Increasing evidence from preclinical and clinical studies suggest that phytochemicals can favorably modulate several signaling pathways involved in cancer development and progression. Combinations of phytochemicals promote cell death, inhibit cell proliferation and invasion, sensitize cancerous cells, and boost the immune system, thus making them striking alternatives in cancer therapy. We previously investigated the effect of six phytochemicals (Indol-3-Carbinol, Resveratrol, C-phycocyanin, Isoflavone, Curcumin and Quercetin), at their bioavailable levels on breast cancer cell lines and were compared to primary cell lines over a period of 6 days. This study showed the compounds had a synergestic effect in inhibiting cell proliferation, reducing cellular migration and invasion, inducing both cell cycle arrest and apoptosis. Despite the vast number of basic science and preclinical cancer studies involving phytochemicals, the number of CAM clinical trials in cancer treatment still remains nascent. In this review, we summarize findings from preclinical and clinical studies, including our work involving use of phytochemicals, individually as well as in combination and further discuss the potential of these phytochemicals to pave way to integrate CAM in primary health care.

SELECTION OF CITATIONS
SEARCH DETAIL
...