Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(26): 38180-38195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38789710

ABSTRACT

A novel adsorbent (MIL-CMIVSB) was fabricated by modification of H2N-MIL-101(Cr) with carboxymethyl-imidazolium O-vanillin Schiff base. The MIL-CMIVSB's physicochemical characteristics were examined using the pertinent characterization methods. NH2-MIL-101(Cr) has a BET surface area of 1492.4 m2g-1, while MIL-CMIVSB adsorbent had 1278.7 m2g-1. Batch adsorption experiments examined the MIL-CMIVSB's cupric ion adsorption capacity from aqueous solutions at different adsorbent doses (0.1-3 mg), pH (2.0-10.0), contact times (0-240 min), metal ion initial concentrations (10-300 mg/L), and temperatures (298-308 K). The optimum conditions were 1 mg/mL of MIL-CMIVSB adsorbent, 46 min adsorption time, pH 7, 100 ppm initial cupric ion concentration, and 303 K temperature. MIL-CMIVSB effectively and selectively removes cupric ions with an adsorption capability of 359.05 ± 12.06 mg/g. The nonlinear Liu isotherm governed Cu(II) sorption performance on MIL-CMIVSB (KL = 0.257 ± 0.01 mg/g, R2 = 0.99892) and pseudo-2nd-order kinetically (k2 = 0.00116 × 10-4 g/mg min, R2 = 0.99721).


Subject(s)
Metal-Organic Frameworks , Schiff Bases , Water Pollutants, Chemical , Schiff Bases/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Metal-Organic Frameworks/chemistry , Copper/chemistry , Water Purification/methods , Hydrogen-Ion Concentration , Ions , Kinetics
2.
Biosensors (Basel) ; 13(6)2023 May 29.
Article in English | MEDLINE | ID: mdl-37366953

ABSTRACT

The ultimate objective of this research work is to design a sensitive and selective electrochemical sensor for the efficient detection of ascorbic acid (AA), a vital antioxidant found in blood serum that may serve as a biomarker for oxidative stress. To achieve this, we utilized a novel Yb2O3.CuO@rGO nanocomposite (NC) as the active material to modify the glassy carbon working electrode (GCE). The structural properties and morphological characteristics of the Yb2O3.CuO@rGO NC were investigated using various techniques to ensure their suitability for the sensor. The resulting sensor electrode was able to detect a broad range of AA concentrations (0.5-1571 µM) in neutral phosphate buffer solution, with a high sensitivity of 0.4341 µAµM-1cm-2 and a reasonable detection limit of 0.062 µM. The sensor's great sensitivity and selectivity allowed it to accurately determine the levels of AA in human blood serum and commercial vitamin C tablets. It demonstrated high levels of reproducibility, repeatability, and stability, making it a reliable and robust sensor for the measurement of AA at low overpotential. Overall, the Yb2O3.CuO@rGO/GCE sensor showed great potential in detecting AA from real samples.


Subject(s)
Graphite , Nanocomposites , Humans , Graphite/chemistry , Ascorbic Acid , Reproducibility of Results , Nanocomposites/chemistry , Carbon/chemistry , Electrodes , Electrochemical Techniques/methods
3.
Sci Rep ; 13(1): 2904, 2023 02 18.
Article in English | MEDLINE | ID: mdl-36807399

ABSTRACT

This paper presents a new method for determining the effect of healthy personal protective material (HPPM) stripes, such as surgical masks, protective suits, and overhead and foot covers, on the durability and physicomechanical characteristics of concrete for use in architectural forms. Because of the current global epidemic caused by coronavirus (COVID-19), the use of HPPM, such as surgical masks, protective suits, and overhead and foot covers, has increased considerably. COVID-19's second and third waves are currently affecting various countries, necessitating the use of facemasks (FM). Consequently, millions of single FM have been discharged into the wild, washing up on beaches, floating beneath the seas, and ending up in hazardous locations. The effect of stripe fibers on the physicomechanical characteristics of concrete, such as the workability, Uniaxial Compressive Strength UCS, flexural strength, impact strength, spalling resistance, abrasion resistance, sorptivity, Water absorption Sw, porosity (ηe), water penetration, permeability, and economic and eco-friendly aspects, need to be determined. With a focus on HPPM, especially single-use facemasks, this study investigated an innovative way to incorporate pandemic waste into concrete structures. Scanning electron microscope and X-ray diffraction patterns were employed to analyze the microstructures and interfacial transition zones and to identify the elemental composition. The HPPM had a pore-blocking effect, which reduced the permeability and capillary porosity. Additionally, the best concentrations of HPPM, particularly of masks, were applied by volume at 0, 1, 1.5, 2.0, and 2.5%. The use of mixed fibers from different HPPMs increased the strength and overall performance of concrete samples. The tendency of growing strength began to disappear at approximately 2%. The results of this investigation showed that the stripe content had no effect on the compressive strength. However, the stripe is critical for determining the flexural strength of concrete. The UCS increased steadily between 1 and 1.5% before falling marginally at 2.5%, which indicates that incorporating HPPM into concrete had a significant impact on the UCS of the mixture. The addition of HPPM to the mixtures considerably modified the failure mode of concrete from brittle to ductile. Water absorption in hardened concrete is reduced when HPPM stripes and fibers were added separately in low-volume fractions to the concrete mixture. The concrete containing 2% HPPM fibers had the lowest water absorption and porosity percentage. The HPPM fibers were found to act as bridges across cracks, enhancing the transfer capability of the matrices. From a technological and environmental standpoint, this study found that using HPPM fibers in the production of concrete is viable.


Subject(s)
COVID-19 , Humans , Foot , Lower Extremity , Permeability
4.
Materials (Basel) ; 15(11)2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35683307

ABSTRACT

This study is focused on the kinetics and adsorption isotherms of amine-functionalized magnesium ferrite (MgFe2O4) for treating the heavy metals in wastewater. A sol-gel route was adopted to produce MgFe2O4 nanoparticles. The surfaces of the MgFe2O4 nanoparticles were functionalized using primary amine (ethanolamine). The surface morphology, phase formation, and functionality of the MgFe2O4 nano-adsorbents were studied using the SEM, UV-visible, FTIR, and TGA techniques. The characterized nanoparticles were tested on their ability to adsorb the Pb2+, Cu2+, and Zn2+ ions from the wastewater. The kinetic parameters and adsorption isotherms for the adsorption of the metal ions by the amine-functionalized MgFe2O4 were obtained using the pseudo-first-order, pseudo-second-order, Langmuir, and Freundlich models. The pseudo-second order and Langmuir models best described the adsorption kinetics and isotherms, implying strong chemisorption via the formation of coordinative bonds between the amine groups and metal ions. The Langmuir equation revealed the highest adsorption capacity of 0.7 mmol/g for the amine-functionalized MgFe2O4 nano-adsorbents. The adsorption capacity of the nanoadsorbent also changed with the calcination temperature. The MgFe2O4 sample, calcined at 500 °C, removed the most of the Pb2+ (73%), Cu2+ (59%), and Zn2+ (62%) ions from the water.

5.
Materials (Basel) ; 15(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35591559

ABSTRACT

The use of ZnO as a photocatalyst with a reduced recombination rate of charge carriers and maximum visible light harvesting remains a challenge for researchers. Herein, we designed and synthesized a unique La/ZnO/CNTs heterojunction system via a sol-gel method to evaluate its photocatalytic performance for hydrogen evolution. A ferrocene powder catalyst was tested for the production of CNT forests over Si/SiO2/Al2O3 substrate. A chemical vapor deposition (CVD) route was followed for the forest growth of CNTs. The La/ZnO/CNTs composite showed improved photocatalytic efficiency towards hydrogen evolution (184.8 mmol/h) in contrast to 10.2 mmol/h of pristine ZnO. The characterization results show that promoted photocatalytic activity over La/ZnO/NTs is attributed to the spatial separation of the charge carriers and extended optical absorption towards the visible light spectrum. The optimum photocatalyst shows a 16 h cycle performance for hydrogen evolution. The H2 evolution rate under visible light illumination reached 10.2 mmol/h, 145.9 mmol/h and 184.8 mmol/h over ZnO, La/ZnO and La/ZnO/CNTs, respectively. Among the prepared photocatalysts, ZnO showed the lowest H2 evolution rate due to the fast recombination of electron-hole pairs than heterojunction photocatalysts. This research paves the way for the development of ZnO and CNT-based photocatalysts with a wide optical response and reduced charge carrier recombinations.

6.
Materials (Basel) ; 15(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35454514

ABSTRACT

AISI 316L stainless steel (SS) is one of the extensively used biomaterials to produce implants and medical devices. It provides a low-cost solution with ample mechanical properties, corrosion resistance, and biocompatibility compared to its counterpart materials. However, the implants made of this material are subjected to a short life span in human physiological conditions leading to the leaching of metal ions, thus limiting its use as a biomaterial. In this research, the addition of boron, titanium, and niobium with varying concentrations in the SS matrix has been explored. This paper explores the impact of material composition on modified SS alloy's physical and mechanical properties. The study's outcomes specify that the microhardness increases for all the alloy compositions, with a maximum increase of 64.68% for the 2 wt.% niobium added SS alloy. On the other hand, the tensile strength decreased to 297.40 MPa for the alloy containing 0.25 wt.% boron and 2 wt.% titanium additions compared to a tensile strength of 572.50 MPa for pure SS. The compression strength increased from 776 MPa for pure SS to 1408 MPa for the alloy containing niobium and titanium additions in equal concentrations.

7.
Chemosphere ; 287(Pt 2): 132178, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34509024

ABSTRACT

The rapid increases in environmental hazardous gases have laid dangerous effects on human health. The detection of such pollutants gases is mandatory using various optimal techniques. In this paper, porous multifaceted Co3O4/ZnO nanostructures are synthesized by pyrolyzing sacrificial template of core-shell double zeolitic imidazolate frameworks (ZIFs) for gas sensing applications. The fabricated exhibit superior gas sensor response, high selectivity, fast response/recovery times, and remarkable stability and sensitivity to H2S gas. In particular, the multifaceted Co3O4/ZnO nanostructures show a maximum response of 147 at 100 ppm of H2S under optimum conditions. The remarkable gas sensing performances are mainly ascribed to high porosity, wide surface area multifaceted nanostructures, presence of heterojunctions and catalytic activity of ZnO and Co3O4, which are beneficial for H2S gas sensors industry.


Subject(s)
Nanostructures , Zeolites , Zinc Oxide , Gases , Humans , Porosity
8.
Materials (Basel) ; 14(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34885576

ABSTRACT

The release of phenolic-contaminated treated palm oil mill effluent (TPOME) poses a severe threat to human and environmental health. In this work, manganese-modified black TiO2 (Mn-B-TiO2) was produced for the photodegradation of high concentrations of total phenolic compounds from TPOME. A modified glycerol-assisted technique was used to synthesize visible-light-sensitive black TiO2 nanoparticles (NPs), which were then calcined at 300 °C for 60 min for conversion to anatase crystalline phase. The black TiO2 was further modified with manganese by utilizing a wet impregnation technique. Visible light absorption, charge carrier separation, and electron-hole pair recombination suppression were all improved when the band structure of TiO2 was tuned by producing Ti3+ defect states. As a result of the enhanced optical and electrical characteristics of black TiO2 NPs, phenolic compounds were removed from TPOME at a rate of 48.17%, which is 2.6 times higher than P25 (18%). When Mn was added to black TiO2 NPs, the Ti ion in the TiO2 lattice was replaced by Mn, causing a large redshift of the optical absorption edges and enhanced photodegradation of phenolic compounds from TPOME. The photodegradation efficiency of phenolic compounds by Mn-B-TiO2 improved to 60.12% from 48.17% at 0.3 wt% Mn doping concentration. The removal efficiency of phenolic compounds from TPOME diminished when Mn doping exceeded the optimum threshold (0.3 wt%). According to the findings, Mn-modified black TiO2 NPs are the most effective, as they combine the advantages of both black TiO2 and Mn doping.

9.
Materials (Basel) ; 14(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34832398

ABSTRACT

Nonthermal plasma processing is a dry, environment-friendly and chemical-free method of improving the wettability, adhesion, self-cleaning and dying quality of fabrics without affecting their bulk properties. This study presents a green synthesis and coating method for the immobilization of nanoparticles of ZnO on the nonthermal plasma functionalized cotton fabric. The self-cleaning activity of ZnO-coated cotton was then optimized statistically. The ultraviolet protection and antimicrobial activity of the optimized and a control sample were also elaborated in this study. Psidium guajava Linn (guava) plant extract and zinc chloride were used in the ultrasonic biosynthesis of ZnO nanoparticles and concurrent immobilization over plasma functionalized cotton. Sodium hydroxide was used as a reaction accelerator. Statistical complete composite design (CCD) based on the amount of ZnCl2, NaOH and plasma exposure time was used to optimize the role of input parameters on the self-cleaning ability of the coated cotton. Methylene blue in water was used as a sample pollutant in the self-cleaning study. The ZnO-coated cotton showed notably high self-cleaning activity of 94% and a UV protection factor of 69.87. The antimicrobial activity against E. Coli and S. Aureus bacteria was also appreciably high compared to the control.

10.
Materials (Basel) ; 14(19)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34640238

ABSTRACT

Various conventional approaches have been reported for the synthesis of nanomaterials without optimizing the role of synthesis parameters. The unoptimized studies not only raise the process cost but also complicate the physicochemical characteristics of the nanostructures. The liquid-plasma reduction with optimized synthesis parameters is an environmentally friendly and low-cost technique for the synthesis of a range of nanomaterials. This work is focused on the statistically optimized production of silver nanoparticles (AgNPs) by using a liquid-plasma reduction process sustained with an argon plasma jet. A simplex centroid design (SCD) was made in Minitab statistical package to optimize the combined effect of stabilizers on the structural growth and UV absorbance of AgNPs. Different combinations of glucose, fructose, sucrose and lactose stabilizers were tested at five different levels (-2, -1, 0, 1, 2) in SCD. The effect of individual and mixed stabilizers on AgNPs growth parameters was assumed significant when p-value in SCD is less than 0.05. A surface plasmon resonance band was fixed at 302 nm after SCD optimization of UV results. A bond stretching at 1633 cm-1 in FTIR spectra was assigned to C=O, which slightly shifts towards a larger wavelength in the presence of saccharides in the solution. The presence of FCC structured AgNPs with an average size of 15 nm was confirmed from XRD and EDX spectra under optimized conditions. The antibacterial activity of these nanoparticles was checked against Staphylococcus aureus and Escherichia coli strains by adopting the shake flask method. The antibacterial study revealed the slightly better performance of AgNPs against Staph. aureus strain than Escherichia coli.

11.
Materials (Basel) ; 14(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34683764

ABSTRACT

The conventional open ponding system employed for palm oil mill agro-effluent (POME) treatment fails to lower the levels of organic pollutants to the mandatory standard discharge limits. In this work, carbon doped black TiO2 (CB-TiO2) and carbon-nitrogen co-doped black TiO2 (CNB-TiO2) were synthesized via glycerol assisted sol-gel techniques and employed for the remediation of treated palm oil mill effluent (TPOME). Both the samples were anatase phase, with a crystallite size of 11.09-22.18 nm, lower bandgap of 2.06-2.63 eV, superior visible light absorption ability, and a high surface area of 239.99-347.26 m2/g. The performance of CNB-TiO2 was higher (51.48%) compared to only (45.72%) CB-TiO2. Thus, the CNB-TiO2 is employed in sonophotocatalytic reactions. Sonophotocatalytic process based on CNB-TiO2, assisted by hydrogen peroxide (H2O2), and operated at an ultrasonication (US) frequency of 30 kHz and 40 W power under visible light irradiation proved to be the most efficient for chemical oxygen demand (COD) removal. More than 90% of COD was removed within 60 min of sonophotocatalytic reaction, producing the effluent with the COD concentration well below the stipulated permissible limit of 50 mg/L. The electrical energy required per order of magnitude was estimated to be only 177.59 kWh/m3, indicating extreme viability of the proposed process for the remediation of TPOME.

12.
Materials (Basel) ; 14(12)2021 Jun 13.
Article in English | MEDLINE | ID: mdl-34199244

ABSTRACT

The powder metallurgy (PM) technique has been widely used for producing different alloy compositions by the addition of suitable reinforcements. PM is also capable of producing desireable mechanical and physical properties of the material by varying process parameters. This research investigates the addition of titanium and niobium in a 316L stainless steel matrix for potential use in the biomedical field. The increase of sintering dwell time resulted in simultaneous sintering and surface nitriding of compositions, using nitrogen as the sintering atmosphere. The developed alloy compositions were characterized using OM, FESEM, XRD and XPS techniques for quantification of the surface nitride layer and the nitrogen absorbed during sintering. The corrosion resistance and cytotoxicity assessments of the developed compositions were carried out in artificial saliva solution and human oral fibroblast cell culture, respectively. The results indicated that the nitride layer produced during sintering increased the corrosion resistance of the alloy and the developed compositions are non-cytotoxic. This newly developed alloy composition and processing technique is expected to provide a low-cost solution to implant manufacturing.

13.
Environ Res ; 201: 111591, 2021 10.
Article in English | MEDLINE | ID: mdl-34186081

ABSTRACT

N2O is the most significant anthropogenic greenhouse gas, which cause the ozone depletion. Hence, the room temperature detection of N2O is highly desirable. In this work, The TCN(II)-KOH-rGO/CF modified electrode was successfully fabricated by drop coating method. The synthesized electrode was successfully characterized by SEM, TEM, FT-IR and XRD. The sensor electrode was used to detect different N2O concentration in flow conditions at room temperature. TCN(II)-KOH-rGO/CF modified electrode showed high sensitivity towards N2O, a wide range from 1ppm to 16 ppm and low detection of 1 ppm N2O were achieved for the TCN(II)-KOH-rGO/CF modified electrode. The limit of detection and the response towards this nitrogen oxide is competitive to other sensing methods. In addition, the sensitivity of the electrochemical sensor electrode was compared with the online Gas Chromatography. Additionally, the selectivity of the working electrode was analyzed and specified. The working electrode stability was analyzed for more than 30 days shows good stability. The fabricated TCN(II)-KOH-rGO/CF electrode is easier to prepare to get excellent analytical performance towards N2O. Hence, the proposed TCN(II)-KOH-rGO/CF electrode could be the suitable material for detection of N2O in the real site process.


Subject(s)
Carbon , Electrons , Carbon Fiber , Cyanides , Graphite , Nickel , Spectroscopy, Fourier Transform Infrared , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...