Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(26): 38180-38195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38789710

ABSTRACT

A novel adsorbent (MIL-CMIVSB) was fabricated by modification of H2N-MIL-101(Cr) with carboxymethyl-imidazolium O-vanillin Schiff base. The MIL-CMIVSB's physicochemical characteristics were examined using the pertinent characterization methods. NH2-MIL-101(Cr) has a BET surface area of 1492.4 m2g-1, while MIL-CMIVSB adsorbent had 1278.7 m2g-1. Batch adsorption experiments examined the MIL-CMIVSB's cupric ion adsorption capacity from aqueous solutions at different adsorbent doses (0.1-3 mg), pH (2.0-10.0), contact times (0-240 min), metal ion initial concentrations (10-300 mg/L), and temperatures (298-308 K). The optimum conditions were 1 mg/mL of MIL-CMIVSB adsorbent, 46 min adsorption time, pH 7, 100 ppm initial cupric ion concentration, and 303 K temperature. MIL-CMIVSB effectively and selectively removes cupric ions with an adsorption capability of 359.05 ± 12.06 mg/g. The nonlinear Liu isotherm governed Cu(II) sorption performance on MIL-CMIVSB (KL = 0.257 ± 0.01 mg/g, R2 = 0.99892) and pseudo-2nd-order kinetically (k2 = 0.00116 × 10-4 g/mg min, R2 = 0.99721).


Subject(s)
Metal-Organic Frameworks , Schiff Bases , Water Pollutants, Chemical , Schiff Bases/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Metal-Organic Frameworks/chemistry , Copper/chemistry , Water Purification/methods , Hydrogen-Ion Concentration , Ions , Kinetics
2.
Molecules ; 29(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474672

ABSTRACT

In this work, we studied the corrosion of Cu metal in 0.5 mol L-1 HCl and the inhibition effect of the expired Cefazolin drug. The inhibition efficiency (IE) of Cefazolin varied according to its concentration in solution. As the Cefazolin concentration increased to 300 ppm, the IE increased to 87% at 298 K and decreased to 78% as the temperature increased to 318 K. The expired drug functioned as a mixed-type inhibitor. The adsorption of the drug on the copper surface followed Temkin's adsorption model. The magnitudes of the standard free energy change (ΔGoads) and adsorption equilibrium constant (Kads) indicated the spontaneous nature and exothermicity of the adsorption process. Energy dispersive X-ray (EDX) and scanning electron microscopy (SEM) techniques showed that the drug molecules were strongly attached to the Cu surface. The electrochemical frequency modulation (EFM), potentiodynamic polarization (PP), and electrochemical impedance spectroscopy (EIS) results were in good agreement with the results of the weight loss (WL) method. The density functional tight-binding (DFTB) and Monte Carlo (MC) simulation results indicated that the expired drug bound to the copper surface through the lone pair of electrons of the heteroatoms as well as the π-electrons of the tetrazole ring. The adsorption energy between the drug and copper metal was -459.38 kJ mol-1.

3.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139837

ABSTRACT

Two bis-(imidazolium-vanillylidene)-(R,R)-diaminocyclohexane ligands (H2(VAN)2dach, H2L1,2) and their Pd(II) complexes (PdL1 and PdL2) were successfully synthesized and structurally characterized using microanalytical and spectral methods. Subsequently, to target the development of new effective and safe anti-breast cancer chemotherapeutic agents, these complexes were encapsulated by lipid nanoparticles (LNPs) to formulate (PdL1LNP and PdL2LNP), which are physicochemically and morphologically characterized. PdL1LNP and PdL2LNP significantly cause DNA fragmentation in MCF-7 cells, while trastuzumab has a 10% damaging activity. Additionally, the encapsulated Pd1,2LNPs complexes activated the apoptotic mechanisms through the upregulated P53 with p < 0.001 and p < 0.05, respectively. The apoptotic activity may be triggered through the activity mechanism of the Pd1,2LNPs in the inhibitory actions against the FGFR2/FGF2 axis on the gene level with p < 0.001 and the Her2/neu with p < 0.05 and p < 0.01. All these aspects have triggered the activity of the PdL1LNP and PdL2LNP to downregulate TGFß1 by p < 0.01 for both complexes. In conclusion, LNP-encapsulated Pd(II) complexes can be employed as anti-cancer drugs with additional benefits in regulating the signal mechanisms of the apoptotic mechanisms among breast cancer cells with chemotherapeutic-safe actions.

4.
ACS Omega ; 8(42): 39023-39034, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37901482

ABSTRACT

In this work, silica nanospheres were used as support for gold nanoparticles and applied for bisphenol A electrochemical detection. The development of new silica-supported materials has attracted increasing attention in the scientific world. One approach of interest is using silica nanospheres as support for gold nanoparticles. These materials have a variety of applications in several areas, such as electrochemical sensors. The obtained materials were characterized by solid-state UV-vis spectroscopy, electron microscopy, X-ray diffraction, and electrochemical techniques. The electrode modified with AuSiO2700/CHI/Pt was applied as an electrochemical sensor for BPA, presenting an oxidation potential of 0.842 V and a higher peak current among the tested materials. The AuSiO2700/CHI/Pt electrode showed a logarithmic response for the detection of BPA in the range of 1-1000 nmol L-1, with a calculated detection limit of 7.75 nmol L-1 and a quantification limit of 25.8 nmol L-1. Thus, the electrode AuSiO2700/CHI/Pt was presented as a promising alternative to an electrochemical sensor in the detection of BPA.

5.
Chemosphere ; 338: 139349, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37385480

ABSTRACT

This study investigates the potential role of Juglans sp. root extract-mediated copper oxide nanoparticles of Luffa cylindrica seed oil (LCSO) into methyl esters. The synthesized green nanoparticle was characterized by Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), and Scanning electron microscopy (SEM) spectroscopies to find out the crystalline size (40 nm), surface morphology (rod shape), particle size (80-85 nm), and chemical composition (Cu = 80.25% & O = 19.75%), accordingly. The optimized protocol for the transesterification reaction was adjusted as oil to methanol molar ratio (1:7), copper oxide nano-catalyst concentration (0.2 wt %), and temperature (90 °C) corresponding to the maximum methyl esters yield of 95%. The synthesized methyl esters were characterized by GC-MS, 1H NMR, 13C NMR, and FT-IR studies to know and identify the chemical composition of newly synthesized Lufa biodiesel. The fuel properties of Luffa cylindrica seed oil biofuel were checked and compared with the American Biodiesel standards (ASTM) (D6751-10). Finally, it is commendable to use biodiesel made from wild, uncultivated, and non-edible Lufa cylindrica to promote and adopt a cleaner and sustainable energy method. The acceptance and implementation of the green energy method may result in favourable environmental effects, which in turn may lead to better societal and economic development.


Subject(s)
Luffa , Nanoparticles , Esters , Copper , Plant Oils/chemistry , Biofuels/analysis , Spectroscopy, Fourier Transform Infrared , Esterification , Oxides , Catalysis
6.
Heliyon ; 9(5): e15606, 2023 May.
Article in English | MEDLINE | ID: mdl-37144194

ABSTRACT

Biodiesel is considered to be more friendly to the environment than petroleum-based fuels, cheaper and capable for producing greener energy which contributed positively in boosting bio-economy. A new non-edible feedstock utilized from date seed oil was analyzed for the synthesis of eco-friendly biodiesel using newly novel hydroxyapatite heterogeneous catalysts, obtaining from waste camel bones prepared from dried camel bone followed calcination under different temperature. This catalyst was characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM). Results showed that hydroxyapatite catalyst pore size reduced with increasing the calcination temperature. Optimize biodiesel yield (89 wt%) was achieved through the process of transesterification with optimum reaction conditions of 4 wt% catalyst, oil to ethanol molar ratio of 1:7 and temperature 75 °C for 3 h reaction time. The production of FAME was confirmed by using gas chromatography-mass spectroscopy (GC-MS). Fuel properties of fatty acid ethyl ester complied with ASTM D 6751 which indicated that it would be an appropriate alternative form of fuel. As a result, using biodiesel made from waste and untamed resources to develop and implement a more sustainable and environmentally friendly energy strategy is commendable. The acceptance and implementation of the green energy method may result in favorable environmental effects, which in turn may lead to better societal and economic growth for biodiesel industry at a larger scale.

7.
Chemosphere ; 305: 135335, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35724723

ABSTRACT

Membrane technology has been adopted as a prospective and promising alternative to the standard technology used for biodiesel production since the time when it had some limitations. During this research project, the inedible seed oil generating feedstock known as Saussurea heteromalla was put through a biodiesel production process that utilized membrane technology with an effort to increase the yield of methyl ester. The transesterification process was mediated by zirconium oxide nanoparticles that were generated using an aqueous extract of Portulaca oleracea leaf. With an oil to methanol ratio of 1:9, a catalyst concentration of 0.88 (wt. %), temperature of 87 °C, and reaction time of 180 min, the highest possible biodiesel yield of 93% was achieved. The findings of the catalyst characterization demonstrated the purity of the zirconium oxide nano particles and their nanoscale nature with average particle size of 31 nm. Using gas chromatography and mass spectrometry (GC/MS), an examination of biodiesel revealed the presence of four different peaks of methyl esters. Using Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance, we were able to verify that the production of methyl esters in the biodiesel sample was successful (NMR). Zerconium oxide nanoparticles were found reusable up to five consecutive cycles of transesterification. The fuel-related properties of methyl ester have been determined and are in line with the requirements of the international standards ASTM D-6571 and EN 14214. In the course of our ongoing research, we made use of membrane technology, which led to the production of biodiesel from the seed oil of Saussurea heteromalla that was better for the environment, more cost effective, and produced in greater quantities.


Subject(s)
Biofuels , Saussurea , Biofuels/analysis , Catalysis , Esterification , Esters/chemistry , Plant Oils/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...