Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835324

ABSTRACT

Tuberculosis (TB) is a leading cause of mortality due to infectious disease and rates have increased during the emergence of COVID-19, but many of the factors determining disease severity and progression remain unclear. Type I Interferons (IFNs) have diverse effector functions that regulate innate and adaptive immunity during infection with microorganisms. There is well-documented literature on type I IFNs providing host defense against viruses; however, in this review, we explore the growing body of work that indicates high levels of type I IFNs can have detrimental effects to a host fighting TB infection. We report findings that increased type I IFNs can affect alveolar macrophage and myeloid function, promote pathological neutrophil extracellular trap responses, inhibit production of protective prostaglandin 2, and promote cytosolic cyclic GMP synthase inflammation pathways, and discuss many other relevant findings.


Subject(s)
COVID-19 , Interferon Type I , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , Interferon Type I/metabolism , Virulence , Immunity, Innate , Interferons/metabolism
2.
Int J Mol Sci ; 23(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36012562

ABSTRACT

Coronaviruses represent a diverse family of enveloped positive-sense single stranded RNA viruses. COVID-19, caused by Severe Acute Respiratory Syndrome Coronavirus-2, is a highly contagious respiratory disease transmissible mainly via close contact and respiratory droplets which can result in severe, life-threatening respiratory pathologies. It is understood that glutathione, a naturally occurring antioxidant known for its role in immune response and cellular detoxification, is the target of various proinflammatory cytokines and transcription factors resulting in the infection, replication, and production of reactive oxygen species. This leads to more severe symptoms of COVID-19 and increased susceptibility to other illnesses such as tuberculosis. The emergence of vaccines against COVID-19, usage of monoclonal antibodies as treatments for infection, and implementation of pharmaceutical drugs have been effective methods for preventing and treating symptoms. However, with the mutating nature of the virus, other treatment modalities have been in research. With its role in antiviral defense and immune response, glutathione has been heavily explored in regard to COVID-19. Glutathione has demonstrated protective effects on inflammation and downregulation of reactive oxygen species, thereby resulting in less severe symptoms of COVID-19 infection and warranting the discussion of glutathione as a treatment mechanism.


Subject(s)
COVID-19 , COVID-19/therapy , COVID-19 Vaccines , Glutathione , Humans , Reactive Oxygen Species , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...