Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38767741

ABSTRACT

Green nanotechnology is one of the most expanding fields that provides numerous novel nanoparticle drug formulations with enhanced bioactivity performance. This study aims to synthesize mesoporous metal organic framework (ZIF-8) phytofabricated with the herb Allium sativum (As) as an indicator system for its antibacterial and antifungal impact. The successful synthesis of ZIF-8 as nanocomposite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning coupled with energy-dispersive X-ray spectroscopy and transmission electron microscopy (SEM-EDX and TEM) that showed the textural retainment of ZIF-8 on composite formation with A. sativum. The nanocomposite, A. sativum extract, and ZIF-8 were subjected to antimicrobial assays against Shigella flexneri, Candida albicans, and Candida parapsilosis. The comparative results indicated the potential action of nanocomposite against the bacteria and both the Candida sps; however, the antifungal action against the Candida sps was more effective than the bacterium S. flexneri. The findings suggest that plants, being an important component of ecosystems, could be further explored for the novel drug discovery using green nanotechnology to enhance their impact on the drug-resistant pathogens.

2.
Microorganisms ; 11(10)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37894063

ABSTRACT

Multidrug resistance in bacterial strains known as superbugs is estimated to cause fatal infections worldwide. Migration and urbanization have resulted in overcrowding and inadequate sanitation, contributing to a high risk of superbug infections within and between different communities. The CRISPR-Cas system, mainly type II, has been projected as a robust tool to precisely edit drug-resistant bacterial genomes to combat antibiotic-resistant bacterial strains effectively. To entirely opt for its potential, advanced development in the CRISPR-Cas system is needed to reduce toxicity and promote efficacy in gene-editing applications. This might involve base-editing techniques used to produce point mutations. These methods employ designed Cas9 variations, such as the adenine base editor (ABE) and the cytidine base editor (CBE), to directly edit single base pairs without causing DSBs. The CBE and ABE could change a target base pair into a different one (for example, G-C to A-T or C-G to A-T). In this review, we addressed the limitations of the CRISPR/Cas system and explored strategies for circumventing these limitations by applying diverse base-editing techniques. Furthermore, we also discussed recent research showcasing the ability of base editors to eliminate drug-resistant microbes.

3.
Expert Opin Investig Drugs ; 32(7): 655-667, 2023.
Article in English | MEDLINE | ID: mdl-37534972

ABSTRACT

INTRODUCTION: Over three years have passed since the emergence of coronavirus disease 2019 (COVID-19), and yet the treatment for long-COVID, a post-COVID-19 syndrome, remains long overdue. Currently, there is no standardized treatment available for long-COVID, primarily due to the lack of funding for post-acute infection syndromes (PAIS). Nevertheless, the past few years have seen a renewed interest in long-COVID research, with billions of dollars allocated for this purpose. As a result, multiple randomized controlled trials (RCTs) have been funded in the quest to find an effective treatment for long-COVID. AREAS COVERED: This systematic review identified and evaluated the potential of current drug treatments for long-COVID, examining both completed and ongoing RCTs. EXPERT OPINION: We identified four completed and 22 ongoing RCTs, investigating 22 unique drugs. However, most drugs were deemed to not have high potential for treating long-COVID, according to three pre-specified domains, a testament to the ordeal of treating long-COVID. Given that long-COVID is highly multifaceted with several proposed subtypes, treatments likely need to be tailored accordingly. Currently, rintatolimod appears to have modest to high potential for treating the myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) subtype, LTY-100 and Treamid for pulmonary fibrosis subtype, and metformin for general long-COVID prevention.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Humans , Post-Acute COVID-19 Syndrome , Randomized Controlled Trials as Topic , Fatigue Syndrome, Chronic/drug therapy , Drugs, Investigational/therapeutic use
4.
Microorganisms ; 11(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36838306

ABSTRACT

The scale at which the SARS-CoV-2/COVID-19 pandemic has spread remains enormous. Provided the genetic makeup of the virus and humans is readily available, the quest for knowing the mechanism and epidemiology continues to prevail across the entire scientific community. Several aspects, including immunology, molecular biology, and host-pathogen interaction, are continuously being dug into for preparing the human race for future pandemics. The exact reasons for vast differences in symptoms, pathophysiological implications of COVID-infections, and mortality differences remain elusive. Hence, researchers are also looking beyond traditional genomics, proteomics, and transcriptomics approach, especially entrusting the environmental regulation of the genetic landscape of COVID-human interactions. In line with these questions lies a critical process called epigenetics. The epigenetic perturbations in both host and parasites are a matter of great interest to unravel the disparities in COVID-19 mortalities and pathology. This review provides a deeper insight into current research on the epigenetic landscape of SARS-CoV-2 infection in humans and potential targets for augmenting the ongoing investigation. It also explores the potential targets, pathways, and networks associated with the epigenetic regulation of processes involved in SARS-CoV-2 pathology.

5.
Biomolecules ; 10(4)2020 04 17.
Article in English | MEDLINE | ID: mdl-32316549

ABSTRACT

The present study offers an alternative method for green synthesis of the formation of two types of nanoparticles (NPs). These NPs, titanium oxide and silver NPs (TiO2 and Ag NPs, respectively), were obtained from the amalgamation of intracellular extract of a wild mushroom, Fomes fomentarius, with aqueous solutions of titanium isopropoxide and silver nitrate, respectively. F. fomentarius was identified phenotypically and by 18S ribosomal RNA gene sequencing (Gene accession no: MK635351). The biosynthesis of TiO2 and Ag NPs was studied and characterized by X-ray diffraction (XRD), diffuse reflectance UV-Visible spectroscopy (DR-UV), fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and transmission electron microscope (TEM). Success was achieved in obtaining NPs of differing sizes and shapes. The antibacterial and anticancer activity of the NPs was significant with morphological damage being caused by both, although Ag NPs (10-20 nm) were found to have profound effects on bacterial and cancer cells in comparison to TiO2 NPs (100-120 nm). These metal NPs, synthesized using wild mushrooms, hold a great potential in biomedicinedue to an effective enzyme combination, which permits them to modify different chemical compounds to less toxic forms, which is required for ecofriendly and safe biomaterials.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Coriolaceae/chemistry , Metal Nanoparticles/chemistry , Silver/pharmacology , Titanium/pharmacology , Biodegradation, Environmental , Cell Survival/drug effects , Coriolaceae/genetics , Escherichia coli/drug effects , Genotype , HCT116 Cells , Humans , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Phenotype , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Spores, Fungal/cytology , Spores, Fungal/drug effects , Staphylococcus aureus/drug effects , X-Ray Diffraction
6.
Sci Rep ; 10(1): 3228, 2020 02 24.
Article in English | MEDLINE | ID: mdl-32094420

ABSTRACT

The present work demonstrates the synthesis, characterization and biological activities of different concentrations of tin doped indium oxide nanoparticles (Sn doped In2O3 NPs), i.e., (Sn/In = 5%, 10% and 15%). We have synthesized different size (38.11 nm, 18.46 nm and 10.21 nm) of Sn doped In2O3 NPs. by using an ultra-sonication process. The Sn doped In2O3 NPs were characterized by by x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) which confirmed the successful doping of tin (Sn) with Indium oxide (In2O3). Anticandidal activity was performed by standard agar dilution method using Candida albicans for the study. The minimum inhibitory/fungicidal concentration (MIC/MFC) values recorded were, 8 & >8 mg/ml for pure In2O3 NPs, 4 & 8 mg/ml for 5%, 2 & 8 mg/ml for 10%, whereas 1 & >4 mg/ml for 15% Sn doped In2O3 NPs, respectively. The topographical alteration caused by Sn doped In2O3 NPs on Candida cells, was clearly observed by SEM examination. A significant enhancement in anticandidal activity was seen, when Candida cells were exposed to (Sn/In = 5%, 10% and 15%). Moreover, we have also evaluated the impact of Sn-In2O3 NPs on human colorectal carcinoma cells (HCT-116). The results demonstrated that Sn-In2O3 NPs (Sn/In = 5%, 10% and 15%), caused dose dependent decrease in the cancer cell viability as the low dosage (2.0 mg/mL) showed 62.11% cell viability, while 4.0, 8.0, 16.0, 32.0 mg/mL dosages showed 20.45%, 18.25%, 16.58%, and 15.58% cell viability. In addition, the treatment of Sn-In2O3 NPs also showed significant cellular and anatomical changes in cancer cells as examined by microscopes. We have also examined the impact of Sn-In2O3 NPs (5%, 10%, 15%) on normal cells (HEK-293) and the results demonstrate that Sn-In2O3 NPs did not reduce the cell viability of normal cells.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Nanoparticles/chemistry , Sonication , Tin Compounds/chemical synthesis , Biofilms/drug effects , Candida/ultrastructure , Cell Proliferation/drug effects , Cell Shape/drug effects , Crystallization , HCT116 Cells , HEK293 Cells , Humans , Hyphae/drug effects , Hyphae/growth & development , Microbial Sensitivity Tests , Nanoparticles/ultrastructure , Tin/chemistry , X-Ray Diffraction
7.
RSC Adv ; 10(53): 32137-32147, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-35518181

ABSTRACT

The current study proposes a bio-directed approach for the formation of titanium oxide and silver nanoparticles (TiO2 and Ag NPs), using a wild mushroom, Fomitopsis pinicola, identified by 18S ribosomal RNA gene sequencing (gene accession no. MK635350) and phenotypic examination. NP synthesis was confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance UV-visible spectroscopy (DR-UV), and scanning and transmission electron microscopy (SEM/TEM). Furthermore, the impact of NPs on Escherichia coli and Staphylococcus aureus and a human colon cancer cell line (HCT) were evaluated by MIC/MBC and MTT assays, respectively, along with structural morphogenesis by different microscopy methods. The results obtained showed that TiO2 and Ag NPs were found to be significantly active, however, slightly enhanced antibacterial and anticancer action was seen with Ag NPs (10-30 nm). Such NPs can be utilized to control and treat infectious diseases and colon cancer and therefore have potential in a range of biomedical applications.

8.
Artif Cells Nanomed Biotechnol ; 47(1): 2072-2082, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31126203

ABSTRACT

The establishment of a benign system for the nanoparticle (NPs) synthesis, is a key in nanotechnology for the environmental and health care industries. Therefore, enrichment of novel biological systems for the green synthesis is in significant demand, to lift up these compounds in the biomedical industries. The present work, reports the green synthesis of ZnO NPs, employing a novel thermophile, identified as Bacillus haynesii (GeneBank: MG822851) isolated from the leaf of date palm plant (Phoenix dactylifera), as an eco-friendly nanobiofactory. Physiochemical characterization of ZnO NPs (50 ± 5 nm in size), was achieved by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), diffuse reflectance UV-Visible spectroscopy (DR UV-Vis spectroscopy), Thermogravimetry analysis (TGA), scanning electron microscopy (SEM) and transmissiom electron microscopy (TEM). The morphogenesis and antimicrobial activity of synthesized ZnO NPs, was studied by evaluating the minimum inhibitory/bactericidal concentration (MIC&MBC) against Escherchia coli (8 and 16 mg/mL) and Staphylococcus aureus (4 and 8 mg/mL), respectively. The present study encourages the use of B. haynesii for the green synthesis of ZnO NP. To the best of our knowledge, this is the first report on the study of thermophilic, B. haynesii for green synthesis of NPs in general and ZnO NPs in particular.


Subject(s)
Bacillus/isolation & purification , Bacillus/metabolism , Metal Nanoparticles , Nanotechnology/methods , Zinc Oxide/chemistry , Zinc Oxide/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacillus/genetics , Green Chemistry Technology , Microbial Sensitivity Tests , Phenotype , RNA, Ribosomal, 16S/genetics , Zinc Oxide/pharmacology
9.
Curr Org Synth ; 16(7): 1002-1009, 2019.
Article in English | MEDLINE | ID: mdl-31984881

ABSTRACT

BACKGROUND: Presently, rise in the infectious diseases and subsequent development of drug resistance, is a global threat to human health. However, much efforts are being made by scientists, to develop novel antimicrobials, and also to improve the efficacy of available drugs, in order to combat the lifethreatening infections. OBJECTIVE: Synthesis and characterization of azole functional polymer systems for antimicrobial applications. MATERIALS AND METHODS: Poly(glycidyl methacrylate) (PGMA), was produced by free radical polymerization of the monomer, glycidyl methacrylate (GMA). Different azole functional PGMAs were produced, through chemical modification with imidazole (Im), 1H-1,2,4-triazole (Tri) and 3-amino-1,2,4-triazole (ATri), to get PGMA-Imi, PGMA-Tri and PGMA-ATri, respectively. The structure was confirmed by Fourier transform infrared spectroscopy (FT-IR), thermal properties were investigated by Thermogravimetric Analysis (TGA), and surface morphology was studied by scanning electron microscopy (SEM). Newly synthesized derivatives were further explored, for their antibacterial and anticandidal activities. RESULTS: All the three synthesized and characterized derivatives, displayed a significant activity against the tested microorganisms. The minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC), recorded against Staphylococcus aureus (S. aureus), was 0.5 &1mg/ml for PGMA-Imi, followed by PGMA-ATri & PGMA-Tri, respectively, followed by E. coli with, 1 & 2 mg/ml, 4 & 8 mg/ml, 4& 8 mg/ml, respectively, whereas the maximum MIC & MFC was recorded against C. albicans i.e., 8 & 16 mg/ml, 4 & 8 mg/ml ,4 & 8 mg/ml for PGMA-ATri, PGMA-Tri, PGMA-Imi, respectively. CONCLUSION: In the present work, we report on the state-of-the-art, azole functional polymer systems for antimicrobial applications. These findings suggest that the synthesized azole functional polymer films have antimicrobial properties, which could be potential candidates for coating applications in the biomedical and wastewater treatment field.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Azoles/chemical synthesis , Polymethacrylic Acids/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Azoles/chemistry , Azoles/pharmacology , Bacterial Infections/prevention & control , Candida albicans/drug effects , Candidiasis/prevention & control , Chemistry Techniques, Synthetic , Escherichia coli/drug effects , Humans , Microbial Sensitivity Tests , Polymethacrylic Acids/chemistry , Polymethacrylic Acids/pharmacology , Staphylococcus aureus/drug effects , Wastewater/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...