Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
Heliyon ; 10(17): e37289, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39319145

ABSTRACT

In this study, the shielding properties of novel polymer composites, developed by integrating glycidyl methacrylate with nanoparticles of bismuth oxide (Bi2O3) and tungsten oxide (WO3), were explored. The ability of the composites to attenuate gamma radiation was evaluated by measuring the emissions from Ba-133, Co-60, Cs-137, and Na-22. X-ray diffraction (XRD) spectra were obtained for both the pure polymer glycidyl methacrylate and the samples containing nanostructures of Bi2O3, Bi2O3/WO3, and WO3, and scanning electron microscopy (SEM) was used to analyze the samples. The incorporation of Bi2O3 and WO3 nanoparticles into the polymer glycidyl methacrylate matrix significantly enhanced the composites' ability to attenuate gamma radiation, as demonstrated by the increased linear and mass attenuation coefficients. The results showed good agreement between the experiment and the XCOM database. The composites exhibited significant efficiency in attenuating lower-energy gamma rays, which is particularly advantageous in the medical and nuclear industries.

2.
Environ Sci Pollut Res Int ; 31(43): 55562-55576, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39235759

ABSTRACT

The current investigation focused on the green synthesis of silver nanoparticles (Ag NPs) using Malachra alceifolia (Ma) (the common name is wild okra) leaf extract. The morphological, structural, and optical properties of the synthesized Ma-Ag NPs were characterized by various techniques. The absorption spectral studies (UV-vis and FTIR) confirm the formation of Ma-Ag NPs and their band gap was calculated as 2.1 eV with the help of Tauc's equation. The XRD study gives information about the crystalline nature and FCC structure. The SEM analysis estimates the particle size as 10-55 nm and the average size as 28 nm with a spherical shape. Furthermore, biological studies such as antibacterial activity was performed by the broth dilution method whereas antioxidant was studied through the DPPH radical scavenging technique. To compare the antibacterial activity between Gram-positive and Gram-negative pathogens, the highest bacterial growth of inhibition was observed for Pseudomonas aeruginosa than Staphylococcus aureus when increasing the concentration of the plant extract and Ma-Ag NPs. The scavenging activity of DPPH for both leaf extract and synthesized Ma-Ag NPs was represented in a dose-dependent manner (0.1-1.0 mg/mL), Ma-Ag NPs have shown a significant scavenging activity ranging from 39 to 54% with an average IC50 value of 0.87 ± 0.08. Furthermore, a molecular docking study was performed to confirm the binding interaction outline between the bioactive molecule methyl commate A, Ma-Ag NPs, and proteins such as Aminotransferase and Tyrosyl-tRNA synthetase active sites. The highest interaction tendency was observed between the Aminotransferase and methyl commate A with a binding energy of - 7.79 kcal/mol-1. The high electronegative oxygen of the ligand interacts with H-N- of Lys98 (-O--H-N-) through the formation of hydrogen bond by 3.53A° distance. In addition, the photocatalytic efficiency of Ma-Ag NPs was studied with methylene blue dye degradation under sunlight irradiation at different time intervals. The attained photocatalytic degradation efficiency was 98.3% after 120 min.


Subject(s)
Metal Nanoparticles , Molecular Docking Simulation , Silver , Wastewater , Metal Nanoparticles/chemistry , Silver/chemistry , Wastewater/chemistry , Green Chemistry Technology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Pseudomonas aeruginosa/drug effects , Antioxidants/chemistry
3.
Eur J Pharm Sci ; 200: 106842, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38936514

ABSTRACT

Current treatment for Glioblastoma Multiforme (GBM) is not efficient due to its aggressive nature, tendency to infiltrate surrounding brain tissue, and chemotherapy resistance. Tetrahydroquinoline scaffolds are emerging as a new class of drug for treating many human cancers including GBM. This study investigates the cytotoxicity effect of eight novel derivatives of 2-((3,4-dihydroquinolin-1(2H)-yl)(aryl)methyl)phenol, containing substitute 1 with reduced dihydroquinoline fused with cyclohexene ring and substitute 2 with phenyl and methyl group. The 4-position of the aryl ring was determinant for the desired cytotoxicity, and out of the 8 synthesized compounds, the 4-trifluoromethyl substituted derivative (4ag) exhibited the most anti-GBM potential effect compared to the standard chemotherapeutic agent, temozolomide (TMZ), with IC50 values of 38.3 µM and 40.6 µM in SNB19 and LN229 cell lines, respectively. Our results demonstrated that 4ag triggers apoptosis through the activation of Caspase-3/7. In addition, 4ag induced intracellular reactive oxygen species (iROS) which in turn elevated mitochondrial ROS (mtROS) and causes the disruption of the mitochondrial membrane potential (Δψmt) in both GBM cells. This compound also exhibited anti-migratory properties over the time in both the cell lines. Overall, these findings suggest that tetrahydroquinoline derivative, 4ag could lead to the development of a new drug for treating GBM.


Subject(s)
Antineoplastic Agents , Apoptosis , Glioblastoma , Membrane Potential, Mitochondrial , Quinolines , Reactive Oxygen Species , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Quinolines/pharmacology , Quinolines/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Membrane Potential, Mitochondrial/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Survival/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Caspase 3/metabolism
4.
Environ Res ; 258: 119368, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38848997

ABSTRACT

The most recent advancement in food packaging research involves improving the shelf life of perishable foods by utilising bio-based resources that are edible, eco-friendly, and biodegradable. The current study investigated the effect of edible pectin coating on mature green tomatoes to improve shelf life and storage properties. Zucchini pectin was used to make edible coating. The antimicrobial and antioxidant properties of extracted pectin were investigated. The findings indicated that the extracted pectin had antimicrobial (Staphylococcus aureus, Escherichia coli, and Aspergillus niger) and antioxidant (34.32% at 1 mg/mL) properties.Tomatoes were immersed in pectin solutions of varying concentrations, 1, 3, and 5% (w/v). Physiological evaluations of weight loss, total sugar content, titratable acidity pH, and ascorbic acid were performed on tomatoes during their maturing stages of mature green, light red, pure red, and breaking. Coating the tomatoes with pectin (5%) resulted in minimal weight loss while increasing the retention of total sugar, ascorbic acid, and titratable acidity. The shelf life of the pectin-coated tomatoes was extended to 11 days, while the uncoated control tomatoes lasted 9 days. Thus, a 5% edible pectin solution was found to be effective in coating tomatoes. The current study suggests that using 5% pectin as an edible coating on tomatoes can delay/slow the ripening/maturing process while also extending the shelf-life of tomatoes without affecting their physiochemical properties, which is scalable on a large scale for commercial purposes.


Subject(s)
Pectins , Solanum lycopersicum , Pectins/analysis , Pectins/chemistry , Solanum lycopersicum/chemistry , Food Storage , Food Preservation/methods , Antioxidants/analysis , Antioxidants/pharmacology , Food Packaging , Ascorbic Acid/analysis , Anti-Infective Agents/analysis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
5.
Int J Biol Macromol ; 270(Pt 2): 132457, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772467

ABSTRACT

Transcriptional events play a crucial role in major cellular processes that specify the activity of an individual cells and influences cell population behavior in response to environment. Active (ON) and an inactive (OFF) states controls the transcriptional burst. Yet, the mechanism and kinetics of ON/OFF-state across the different growth phases of Escherichia coli remains elusive. Here, we have used a single mRNA detection method in live-cells to comprehend the ON/OFF mechanism of the first transcriptional (TF) and consecutive events (TC) controlled by lactose promoters, Plac and Plac/ara1. We determined that the duration of TF ON/OFF has different modes, exhibiting a close to inverse behavior to that of TC ON/OFF. Dynamics of ON/OFF states in fast and slow-dividing cells were affected by the promoter region during the initiation of transcription. Period of TF ON-state defines the behavior of TC by altering the number and the frequency of mRNAs formed. Furthermore, we have shown that delayed OFF-time in TF affects the dynamics of TC in both states, which is mainly determined by the upstream promoter region. Furthermore, using elongation arrest experiments, we independently validate that mRNA noise in TC is governed by the delayed OFF-period in TF. We have identified the position of the regulatory regions that plays a crucial role in noise (Fano) modulation. Taken together, our results suggest that the dynamics of the first transcriptional event, TF, pre-defines the diversity of the population.


Subject(s)
Escherichia coli , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , RNA, Messenger , Escherichia coli/genetics , Escherichia coli/growth & development , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic , Kinetics
6.
Environ Geochem Health ; 46(6): 187, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696018

ABSTRACT

The presence of toxic trace elements (TEs) has resulted in a worldwide deterioration in freshwater ecosystem quality. This study aimed to analyze the distribution of TEs, including chromium (Cr), nickel (Ni), arsenic (As), mercury (Hg), cadmium (Cd), and lead (Pb), in water, sediment, and organs of Tilapia (Oreochromis mossambicus) collected from selected inland water bodies in Tamil Nadu, India. The water samples exhibited a range of concentrations for TEs: Cr varied from 0.014 to 5.193 µg/L, Ni ranged from 0.283 to 11.133 µg/L, As ranged from 0.503 to 1.519 µg/L, Cd from 0.001 to 0.616 µg/L, and Pb ranged from non-detectable (ND) to 6.103 µg/L. The concentrations of TEs in sediment were found to vary within the following ranges: 5.259 to 32.621 mg/kg for Cr, 1.932 to 30.487 mg/kg for Ni, 0.129 to 0.563 mg/kg for As, 0.003 to 0.011 mg/kg for Cd, ND to 0.003 mg/kg for Hg, and 0.404 to 1.575 mg/kg for Pb. The study found that the accumulation pattern of TE in fishes across all selected areas was liver > bone > gill > muscle. The organs had TE concentrations of Cr (ND-0.769 mg/kg), Ni (ND-1.053 mg/kg), As (0.002-0.080 mg/kg), Pb (ND-0.411 mg/kg), and Hg (ND-0.067 mg/kg), which was below the maximum residual limit prescribed by EC and FSSAI. The bioconcentration factor (BCF) of TEs exhibited a greater magnitude in comparison with the biota-sediment accumulation factor due to the higher concentration of TEs in fish and lower level in water. The assessment of both carcinogenic and non-carcinogenic risks suggests that the consumption of Tilapia from the study region does not pose any significant risks.


Subject(s)
Bioaccumulation , Geologic Sediments , Tilapia , Trace Elements , Water Pollutants, Chemical , Animals , Tilapia/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Risk Assessment , Geologic Sediments/chemistry , Trace Elements/analysis , Trace Elements/metabolism , India , Environmental Monitoring , Metals, Heavy/analysis , Humans , Fresh Water
7.
Environ Geochem Health ; 46(6): 200, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696110

ABSTRACT

Plant extracts are a great alternative to synthesizing nanoparticles of different metals and metal oxides. This green synthesis method has opened up numerous possibilities in various scientific domains. In present study, Leaf extract from Vitex negundo is a non-deciduous, long-lasting shrub from the Verbenaceae family is used as capping and reducing agents for the synthesis of silver and palladium nanoparticles. The characterization study UV-vis spectrophotometer analysis showed absorbance value around 320 nm which confirming that Ag-Pd nanoparticles have been successfully obtained. Further, SEM is used to investigate the morphology of Ag-Pd NPs, which revealing their spherical and rod-like configuration, aggregation, and the size of the particles are obtained between 50 and 100 nm. The successful synthesis of Ag-Pd NPs was further confirmed by the EDAX chart, which displayed the peak of Ag and Pd at bending energies between 0.5 and 1.5 keV. According to the quantitative study, Ag and Pd ions found about 5.24 and 13.28%, respectively. In addition, surface studies with TEM confirming that synthesized Ag-Pd NPs are predominates with spheres structure morphologies, with sizes averaging 11.20 nm and ranging from 10 to 20 nm. Further, Ag-Pd nanoparticles was applied as potential photocatalyst materials to degrade methylene blue dye and found about 85% of the degradation efficiency within 150 min of the sunlight exposure thus could be used as catalyst to removal of hazardous organic dye molecules.


Subject(s)
Coloring Agents , Metal Nanoparticles , Palladium , Silver , Vitex , Vitex/chemistry , Palladium/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Catalysis , Coloring Agents/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Green Chemistry Technology , Photolysis , Microscopy, Electron, Transmission
9.
ACS Omega ; 9(13): 15239-15250, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585078

ABSTRACT

A novel integrated electrochemical oxidation (EO) and bacterial degradation (BD) technique was employed for the remediation of the chloropyridinyl and chlorothiazolyl classes of neonicotinoid (NEO) insecticides in the environment. Imidacloprid (IM), clothianidin (CL), acetamiprid (AC), and thiamethoxam (TH) were chosen as the target NEOs. Pseudomonas oleovorans SA2, identified through 16S rRNA gene analysis, exhibited the potential for BD. In EO, for the selected NEOs, the total percentage of chemical oxygen demand (COD) was noted in a range of 58-69%, respectively. Subsequently, in the biodegradation of EO-treated NEOs (BEO) phase, a higher percentage (80%) of total organic carbon removal was achieved. The optimum concentration of NEOs was found to be 200 ppm (62%) for EO, while for BEO, the COD efficiency was increased up to 79%. Fourier-transform infrared spectroscopy confirms that the heterocyclic group and aromatic ring were degraded in the EO and further utilized by SA2. Gas chromatography-mass spectroscopy indicated up to 96% degradation of IM and other NEOs in BD (BEO) compared to that of EO (73%). New intermediate molecules such as silanediamine, 1,1-dimethyl-n,n'-diphenyl produced during the EO process served as carbon sources for bacterial growth and further mineralized. As a result, BEO enhanced the removal of NEOs with a higher efficiency of COD and a lower consumption of energy. The removal efficiency of the NEOs by the integrated approach was achieved in the order of AC > CL > IM > TH. This synergistic EO and BD approach holds promise for the efficient detoxification of NEOs from polluted environments.

11.
Front Microbiol ; 15: 1297721, 2024.
Article in English | MEDLINE | ID: mdl-38544856

ABSTRACT

Background: Cooling towers are specialized heat exchanger devices in which air and water interact closely to cool the water's temperature. However, the cooling water contains organic nutrients that can cause microbial corrosion (MC) on the metal surfaces of the tower. This research explores the combined wastewater treatment approach using electrochemical-oxidation (EO), photo-oxidation (PO), and photoelectrochemical oxidation (PEO) to contain pollutants and prevent MC. Methods: The study employed electro-oxidation, a process involving direct current (DC) power supply, to degrade wastewater. MC studies were conducted using weight loss assessments, scanning electron microscopy (SEM), and x-ray diffraction (XRD). Results: After wastewater is subjected to electro-oxidation for 4 h, a notable decrease in pollutants was observed, with degradation efficiencies of 71, 75, and 96%, respectively. In the wastewater treated by PEO, microbial growth is restricted as the chemical oxygen demand decreases. Discussion: A metagenomics study revealed that bacteria present in the cooling tower water consists of 12% of Nitrospira genus and 22% of Fusobacterium genus. Conclusively, PEO serves as an effective method for treating wastewater, inhibiting microbial growth, degrading pollutants, and protecting metal from biocorrosion.

12.
Environ Res ; 251(Pt 1): 118632, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38467361

ABSTRACT

Visual impairment due to corneal keratitis-causing bacteria is becoming a matter of health concern. The bacterial colonization and their resistance to multiple drugs need imperative attention. To overcome the issue of alternative remedial therapeutic agents, particularly for topical application, a study was carried out to synthesize calcium oxide nanoparticles (CaO NPs) using the biomaterial Eleusine coracana seed aqueous extract. The biosynthesized calcium oxide nanoparticles (CaO NPs) are non-toxic or less-toxic chemical precursors. Moreover, CaO NPs are eco-friendly and are used for several industrial, biomedical, and environmental applications. Biosynthesized CaO NPs were characterized using ultraviolet-visible spectroscopy, Fourier transform-infrared spectroscopy, scanning electron microscopy, and dynamic light scattering study. The synthesized CaO NPs exhibit with good anti-inflammatory activities with dose dependant (50-250 µg/mL). Moreover, Eleusine coracana-mediated CaO NPs significantly inhibited the multiple drug-resistant Gram-positive Staphylococci epidermidis and Enterococcus faecalis and Gram-negative Escherichia coli and Klebsiella pneumoniae that were isolated from the corneal ulcer. This study provides a potential therapeutic option for multiple drug-resistant corneal pathogens that cause vision impairment.


Subject(s)
Anti-Bacterial Agents , Calcium Compounds , Eleusine , Nanoparticles , Plant Extracts , Seeds , Plant Extracts/chemistry , Plant Extracts/pharmacology , Calcium Compounds/chemistry , Calcium Compounds/pharmacology , Seeds/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Eleusine/chemistry , Oxides/chemistry , Oxides/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Microbial Sensitivity Tests
13.
Environ Res ; 251(Pt 2): 118702, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38503381

ABSTRACT

The anti-inflammatory, anti-diabetic, and biocompatibility nature of Tamarindus indica L. fruit coat aqueous extract were investigated in this research through in-vitro and in-vivo studies. The anti-inflammatory property was determined through albumin denaturation inhibition and antiprotease activities as up to 39.5% and 41.2% respectively at 30 mg mL-1 concentration. Furthermore, the antidiabetic activity was determined through α-amylase and α-glucosidase inhibition as up to 62.15% and 67.35% respectively at 30 mg mL-1 dosage. The albino mice based acute toxicity study was performed by different treatment groups (group I-V) with different dosages of aqueous extract to detect the biocompatibility of sample. Surprisingly, findings revealed that the T. indica L. fruit coat aqueous extract had no harmful impacts on any of the groups. Urine, as well as serum parameter analysis, confirmed this. Moreover, the findings of SOD (Superoxide Dismutase), GST (Glutathione-S-transferase), & CAT (Catalase) as well as glutathione peroxidase as well as reduced glutathione antioxidant enzymes studies stated that the aqueous extract possess high antioxidant ability via a dose-dependent way. These findings indicate that T. indica fruit coat aqueous extract contains medicinally important phytochemicals with anti-inflammatory and anti-diabetic properties, as well as being biocompatible in nature.


Subject(s)
Anti-Inflammatory Agents , Fruit , Hypoglycemic Agents , Plant Extracts , Tamarindus , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fruit/chemistry , Tamarindus/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Male , Antioxidants/pharmacology , Antioxidants/chemistry , Female
14.
J Fluoresc ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38460094

ABSTRACT

Herein, we report the nonlinear optical (NLO) refraction and absorption features of azo dye namely, methyl orange (MO) dissolved in ethanol, methanol, acetone, 1-propanol, DMF and DMSO. The UV-Visible absorption study reveals that the maximum absorption spectrum of MO dye appeared towards longer wavelength by increasing the solvent polarizability is the result of red shift or bathochromic shift. The Z-scan method is utilized to measure the third-order NLO features of MO dye in different polar solvents. A continuous wave laser with 5-mW power and an excitation wavelength of 405 nm is employed in the Z-scan technique. The NLO features including nonlinear index of refraction (n2), nonlinear coefficient of absorption (ß) and third-order NLO susceptibility (χ3) are calculated to be the order of 10-7 cm2/W, 10-2 cm/W and 10-7 esu, respectively. The NLO index of refraction shows peak-valley transmittance is the result of self-defocusing and NLO absorption coefficient exhibits both positive and negative nonlinearity owing to saturable absorption (SA) and reverse saturable absorption (RSA). The effect of solvent polarizability and dipole moment on third-order NLO susceptibility of MO dye is discussed. Based on the experimental results, an azo dye MO appears to be a promising option for NLO applications in the future.

15.
J Fluoresc ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457074

ABSTRACT

This study emphasis the solvent effect on third-order nonlinear optical (NLO) features of methyl red (MR) dye dissolved in polar solvents including ethanol, methanol, acetone, 1-propanol, DMF and DMSO using low power diode laser. Z-scan technique operating at 405 nm wavelength, is used to estimate the third-order NLO features of MR dye in various solvents. The dye discloses self-defocusing nonlinear index of refraction (n2), which is determined to be the order of 10-7 cm2/W. The nonlinear coefficient of absorption (ß) of MR dye displays both negative and positive value owing to saturable absorption (SA) and reverse saturable absorption (RSA), respectively. The real and imaginary components of the third-order NLO susceptibility of MR dye in polar solvents are measured to be the order of 10-6 esu and 10-7 esu, respectively. The dye exhibits a large NLO susceptibility in DMSO, which is estimated to be 1.21 × 10-6 esu. The effect of solvent spectral features on MR dye is determined by applying a multi-parameter scale called Kamlet-Abboud-Taft. The experiment results indicate that MR dye is a promising NLO material that may find applications in photonics and optoelectronics.

16.
Environ Geochem Health ; 46(3): 92, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38367085

ABSTRACT

A facile and cost-effective hydrothermal followed by precipitation method is employed to synthesize visible light-driven ZnS-Ag ternary composites supported on carbon aerogel (CA). Extensive studies were conducted on the structural, morphological, and optical properties, confirming the successful formation of ternary nanocomposites. The obtained results evidently demonstrate the successful loading of ZnS and Ag onto the surface of the CA. High-resolution transmission electron microscopy analysis revealed that ZnS and Ag nanoparticles (AgNPs) were uniformly distributed on the surface of the CA with an average diameter of 18 nm. The biomass-derived CA, containing a hierarchical porous nano-architecture and an abundant number of -NH2 functional groups on the surface, can greatly prevent the agglomeration, stability and reduce particle size. Brunauer-Emmett-Teller analysis results indicated specific surface areas of 4.62 m2 g-1 for the CA, 48.50 m2 g-1 for the CA/ZnS composite, and 62.62 m2 g-1 for the CA/ZnS-Ag composite. These values demonstrate an increase in surface area upon the incorporation of ZnS and Ag into the CA matrix. Under visible light irradiation, the synthesized CA/ZnS-Ag composites displayed remarkably improved photodegradation efficiency of methylene blue (MB). Among the tested samples, the CA/ZnS-Ag composites exhibited the highest percentage of photodegradation efficiency, surpassing ZnS, CA, and CA/ZnS. The obtained percentages of degradation efficiency for CA, ZnS, CA/ZnS, and CA/ZnS-Ag composites were determined as 26.60%, 52.12%, 68.39%, and 98.64%, respectively. These results highlight the superior photocatalytic performance of the CA/ZnS-Ag composites in the degradation of MB under visible light conditions. The superior efficiency of the CA/ZnS-Ag composite can be attributed to multiple factors, including its elevated specific surface area, inhibition of electron-hole pair recombination, and enhanced photon absorption within the visible light spectrum. The CA/ZnS-Ag composites displayed consistent efficiency over multiple cycles, confirming their stable performance, reusability, and enduring durability, thereby showcasing the robust nature of this composite material.


Subject(s)
Carbon , Metal Nanoparticles , Methylene Blue/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Biomass , Light
17.
Environ Geochem Health ; 46(3): 81, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38367190

ABSTRACT

This study presents an environmentally sustainable method for minimizing sludge production in the textile effluent sector through the combined application of electrokinetic (EK) and electrooxidation (EO) processes. AAS and XRF analyses reveal that utilizing acidic electrolytes in the EK method successfully eliminates heavy metals (Cu, Mn, Zn, and Cr) from sludge, demonstrating superior efficiency compared to alkaline conditions. In addition, the total removal efficiency of COD contents was calculated following the order of EK-3 (60%), EK-1 (51%) and EK-2 (34%). Notably, EK-3, leveraging pH gradient fluctuations induced by anolyte in the catholyte reservoir, outperforms other EK systems in removing COD from sludge. The EK process is complemented by the EO process, leading to further degradation of dye and other organic components through the electrochemical generation of hypochlorite (940 ppm). At an alkaline pH of 10.0, the color and COD removal were effectively achieved at 98 and 70% in EO treatment, compared to other mediums. In addition, GC-MS identified N-derivative residues at the end of the EO. This study demonstrates an integrated approach that effectively eliminates heavy metals and COD from textile sludge, combining EK with EO techniques.


Subject(s)
Metals, Heavy , Sewage , Sewage/chemistry , Metals, Heavy/analysis , Textiles
18.
Environ Geochem Health ; 46(3): 96, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376605

ABSTRACT

SrTiO3/Ag nanocomposites were synthesized using a facile wet impregnation method, employing rigorous experimental techniques for comprehensive characterization. XRD, FTIR, UV, PL, FESEM, and HRTEM were meticulously utilized to elucidate their structural, functional, morphological, and optical properties. The electrochemical performance of the SrTiO3/Ag nanocomposite was rigorously assessed, revealing an impressive specific capacitance of 850 F/g at a current density of 1 A. Furthermore, the photocatalytic activity of the SrTiO3/Ag nanocomposite was rigorously examined using methylene blue (MB) dye, and the results were outstanding. After 120 min of UV irradiation, the nanocomposite exhibited an exceptional MB dye degradation efficiency exceeding 88%. The SrTiO3/Ag nanocomposite represents an exemplary catalyst in terms of efficiency, cost-effectiveness, environmental compatibility, and reusability. The electron and superoxide radicals play a chief role in the MB dye degradation process. The inclusion of Ag within the SrTiO3 matrix facilitated the formation of a conductive nano-network, ultimately resulting in superior capacitive and photocatalytic performance.


Subject(s)
Environmental Pollutants , Nanoparticles , Silver , Electric Conductivity , Methylene Blue
19.
Environ Geochem Health ; 46(2): 30, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227286

ABSTRACT

The removal of color-causing compounds from wastewater is a significant challenge that industries encounter due to their toxic, carcinogenic, and harmful properties. Despite the extensive research and development of various techniques with the objective of effectively degrading color pollutants, the challenge still persists. This paper introduces a simple technique for producing iron oxide nanoparticles (Fe2O3 NPs) using orange fruit peel for sustainable dye degradation in aqueous environment. The observation of color change and the measurement of UV-visible absorbance at 240 nm provided a confirmation for the development of Fe2O3 NPs. Transmission electron microscopy examination demonstrated that the Fe2O3 NPs have an agglomerated distribution and forming spherical structures with size ranging from 25-80 nm. Energy-dispersive X-ray spectroscopy analysis supported the existence of Fe and O. Fourier transform infrared spectroscopy conducted to investigate the involvement of orange peel extract in the reduction, capping, and synthesis of Fe2O3 NPs from the precursor salt. Fe2O3 NPs showed a photocatalytic remediation of 97%, for methylene blue under visible light irradiation. Additionally, prepared NPs exhibited concentration depended biofilm inhibition action against E. coli and S. aureus. In conclusion, Fe2O3 NPs can efficiently purify water and suppress pathogens due to their strong degrading activity, reusability, and biofilm inhibition property.


Subject(s)
Environmental Pollutants , Wastewater , Escherichia coli , Fruit , Staphylococcus aureus , Magnetic Iron Oxide Nanoparticles , Plant Extracts
20.
Chemphyschem ; 25(6): e202300658, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38269420

ABSTRACT

Synthesising and designing pseudocapacitive material with good electrochemical and electrocatalytic behaviour is essential to use as supercapacitor as well as non-enzymatic glucose sensor electrode. In this work, NiCo2 S4 nanoparticles decorated onto the 2D-Carbyne nanosheets are achieved by the solvothermal process. The as-prepared NiCo2 S4 @2D-Carbyne provides rich reaction sites and better diffusion pathways. On usage as an electrode for supercapacitor application, the NiCo2 S4 @2D-Carbyne exhibits the specific capacitance of about 2507 F g-1 at 1 A g-1 . In addition, the fabricated hybrid device generates an energy density of 52.2 Wh kg-1 at a power density of 1.01 kW kg-1 . Besides, the glucose oxidation behaviour of NiCo2 S4 @2D-Carbyne modified GCE has also been performed. The diffusion of glucose from the electrolyte to the electrode obeys the kinetic control process. Furthermore, the fabricated NiCo2 S4 @2D-Carbyne non-enzymatic glucose sensor exhibits a limit of detection of about 34.5 µM with a sensitivity of about 135 µA mM-1 cm-2 . These findings highlight the need to design and synthesis electrode materials with adequate electrolyte-electrode contact, strong structural integrity, and rapid ion/electron transport.

SELECTION OF CITATIONS
SEARCH DETAIL