Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 18422, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891186

ABSTRACT

The emergence of drone-based innovative cyber security solutions integrated with the Internet of Things (IoT) has revolutionized navigational technologies with robust data communication services across multiple platforms. This advancement leverages machine learning and deep learning methods for future progress. In recent years, there has been a significant increase in the utilization of IoT-enabled drone data management technology. Industries ranging from industrial applications to agricultural advancements, as well as the implementation of smart cities for intelligent and efficient monitoring. However, these latest trends and drone-enabled IoT technology developments have also opened doors to malicious exploitation of existing IoT infrastructures. This raises concerns regarding the vulnerability of drone networks and security risks due to inherent design flaws and the lack of cybersecurity solutions and standards. The main objective of this study is to examine the latest privacy and security challenges impacting the network of drones (NoD). The research underscores the significance of establishing a secure and fortified drone network to mitigate interception and intrusion risks. The proposed system effectively detects cyber-attacks in drone networks by leveraging deep learning and machine learning techniques. Furthermore, the model's performance was evaluated using well-known drones' CICIDS2017, and KDDCup 99 datasets. We have tested the multiple hyperparameter parameters for optimal performance and classify data instances and maximum efficacy in the NoD framework. The model achieved exceptional efficiency and robustness in NoD, specifically while applying B-LSTM and LSTM. The system attains precision values of 89.10% and 90.16%, accuracy rates up to 91.00-91.36%, recall values of 81.13% and 90.11%, and F-measure values of 88.11% and 90.19% for the respective evaluation metrics.

2.
Micromachines (Basel) ; 14(10)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37893311

ABSTRACT

This paper presents a novel synthesis of a quasi-Chebyshev Nth order stub-loaded coupled-line ultra-wideband bandpass filter. A unit element of a proposed filter topology consists of two short-circuited stubs loaded at the edges of coupled lines. A distributed equivalent circuit model of a proposed topology is extracted and used to acquire a generalized filtering function. The extracted filtering function is of rational form. The denominator of the filtering function causes a mismatch with Chebyshev type-I polynomials. For conventional narrowband filters, the denominator term can be neglected because of the close vicinity of band-edge frequencies; however, for the ultra-wideband filter response, the factor in the denominator cannot be neglected and hence requires a new mathematical procedure to compensate for the effect of the frequency-dependent term in the denominator. The electrical parameters are calculated using the proposed synthesis and used to design an ideal filter topology on ADS. To validate the proposed design procedure, fabrication is performed on a high-frequency substrate. The proposed filter is miniaturized in size and has good out-of-band performance. The simulated and measured results provide good agreement.

3.
Heliyon ; 9(6): e17602, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37457815

ABSTRACT

Data stored on physical storage devices and transmitted over communication channels often have a lot of redundant information, which can be reduced through compression techniques to conserve space and reduce the time it takes to transmit the data. The need for adequate security measures, such as secret key control in specific techniques, raises concerns about data exposure to potential attacks. Encryption plays a vital role in safeguarding information and maintaining its confidentiality by utilizing a secret key to make the data unreadable and unalterable. The focus of this paper is to tackle the challenge of simultaneously compressing and encrypting data without affecting the efficacy of either process. The authors propose an efficient and secure compression method incorporating a secret key to accomplish this goal. Encoding input data involves scrambling it with a generated key and then transforming it through the Burrows-Wheeler Transform (BWT). Subsequently, the output from the BWT is compressed through both Move-To-Front Transform and Run-Length Encoding. This method blends the cryptographic principles of confusion and diffusion into the compression process, enhancing its performance. The proposed technique is geared towards providing robust encryption and sufficient compression. Experimentation results show that it outperforms other techniques in terms of compression ratio. A security analysis of the technique has determined that it is susceptible to the secret key and plaintext, as measured by the unicity distance. Additionally, the results of the proposed technique showed a significant improvement with a compression ratio close to 90% after passing all the test text files.

4.
PeerJ Comput Sci ; 9: e1709, 2023.
Article in English | MEDLINE | ID: mdl-38192458

ABSTRACT

The process of using robotic technology to examine underwater systems is still a difficult undertaking because the majority of automated activities lack network connectivity. Therefore, the suggested approach finds the main hole in undersea systems and fills it using robotic automation. In the predicted model, an analytical framework is created to operate the robot within predetermined areas while maximizing communication ranges. Additionally, a clustering algorithm with a fuzzy membership function is implemented, allowing the robots to advance in accordance with predefined clusters and arrive at their starting place within a predetermined amount of time. A cluster node is connected in each clustered region and provides the central control center with the necessary data. The weights are evenly distributed, and the designed robotic system is installed to prevent an uncontrolled operational state. Five different scenarios are used to test and validate the created model, and in each case, the proposed method is found to be superior to the current methodology in terms of range, energy, density, time periods, and total metrics of operation.

5.
Article in English | MEDLINE | ID: mdl-36497509

ABSTRACT

Obesity and its complications is one of the main issues in today's world and is increasing rapidly. A wide range of non-contagious diseases, for instance, diabetes type 2, cardiovascular, high blood pressure and stroke, numerous types of cancer, and mental health issues are formed following obesity. According to the WHO, Malaysia is the sixth Asian country with an adult population suffering from obesity. Therefore, identifying risk factors associated with obesity among Malaysian adults is necessary. For this purpose, this study strives to investigate and assess the risk factors related to obesity and overweight in this country. A quantitative approach was employed by surveying 26 healthcare professionals by questionnaire. Collected data were analyzed with the DEMATEL and Fuzzy Rule-Based methods. We found that lack of physical activity, insufficient sleep, unhealthy diet, genetics, and perceived stress were the most significant risk factors for obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Obesity , Adult , Humans , Obesity/epidemiology , Obesity/complications , Overweight/epidemiology , Fuzzy Logic , Diabetes Mellitus, Type 2/epidemiology , Risk Factors
6.
Sensors (Basel) ; 22(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36298244

ABSTRACT

A revolution in network technology has been ushered in by software defined networking (SDN), which makes it possible to control the network from a central location and provides an overview of the network's security. Despite this, SDN has a single point of failure that increases the risk of potential threats. Network intrusion detection systems (NIDS) prevent intrusions into a network and preserve the network's integrity, availability, and confidentiality. Much work has been done on NIDS but there are still improvements needed in reducing false alarms and increasing threat detection accuracy. Recently advanced approaches such as deep learning (DL) and machine learning (ML) have been implemented in SDN-based NIDS to overcome the security issues within a network. In the first part of this survey paper, we offer an introduction to the NIDS theory, as well as recent research that has been conducted on the topic. After that, we conduct a thorough analysis of the most recent ML- and DL-based NIDS approaches to ensure reliable identification of potential security risks. Finally, we focus on the opportunities and difficulties that lie ahead for future research on SDN-based ML and DL for NIDS.


Subject(s)
Deep Learning , Software , Machine Learning , Confidentiality
7.
Sensors (Basel) ; 22(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35890830

ABSTRACT

Underwater wireless sensor networks (UWSNs) have emerged as the most widely used wireless network infrastructure in many applications. Sensing nodes are frequently deployed in hostile aquatic environments in order to collect data on resources that are severely limited in terms of transmission time and bandwidth. Since underwater information is very sensitive and unique, the authentication of users is very important to access the data and information. UWSNs have unique communication and computation needs that are not met by the existing digital signature techniques. As a result, a lightweight signature scheme is required to meet the communication and computation requirements. In this research, we present a Certificateless Online/Offline Signature (COOS) mechanism for UWSNs. The proposed scheme is based on the concept of a hyperelliptic curves cryptosystem, which offers the same degree of security as RSA, bilinear pairing, and elliptic curve cryptosystems (ECC) but with a smaller key size. In addition, the proposed scheme was proven secure in the random oracle model under the hyperelliptic curve discrete logarithm problem. A security analysis was also carried out, as well as comparisons with appropriate current online/offline signature schemes. The comparison demonstrated that the proposed scheme is superior to the existing schemes in terms of both security and efficiency. Additionally, we also employed the fuzzy-based Evaluation-based Distance from Average Solutions (EDAS) technique to demonstrate the effectiveness of the proposed scheme.

8.
Comput Intell Neurosci ; 2022: 3098604, 2022.
Article in English | MEDLINE | ID: mdl-35755731

ABSTRACT

When it comes to conveying sentiments and thoughts, facial expressions are quite effective. For human-computer collaboration, data-driven animation, and communication between humans and robots to be successful, the capacity to recognize emotional states in facial expressions must be developed and implemented. Recently published studies have found that deep learning is becoming increasingly popular in the field of image categorization. As a result, to resolve the problem of facial expression recognition (FER) using convolutional neural networks (CNN), increasingly substantial efforts have been made in recent years. Facial expressions may be acquired from databases like CK+ and JAFFE using this novel FER technique based on activations, optimizations, and regularization parameters. The model recognized emotions such as happiness, sadness, surprise, fear, anger, disgust, and neutrality. The performance of the model was evaluated using a variety of methodologies, including activation, optimization, and regularization, as well as other hyperparameters, as detailed in this study. In experiments, the FER technique may be used to recognize emotions with an Adam, Softmax, and Dropout Ratio of 0.1 to 0.2 when combined with other techniques. It also outperforms current FER techniques that rely on handcrafted features and only one channel, as well as has superior network performance compared to the present state-of-the-art techniques.


Subject(s)
Facial Expression , Facial Recognition , Anger , Emotions/physiology , Humans , Neural Networks, Computer
9.
PLoS One ; 10(5): e0120715, 2015.
Article in English | MEDLINE | ID: mdl-25946001

ABSTRACT

A mobile ad hoc network (MANET) is a set of mobile, decentralized, and self-organizing nodes that are used in special cases, such as in the military. MANET properties render the environment of this network vulnerable to different types of attacks, including black hole, wormhole and flooding-based attacks. Flooding-based attacks are one of the most dangerous attacks that aim to consume all network resources and thus paralyze the functionality of the whole network. Therefore, the objective of this paper is to investigate the capability of a danger theory-based artificial immune algorithm called the mobile dendritic cell algorithm (MDCA) to detect flooding-based attacks in MANETs. The MDCA applies the dendritic cell algorithm (DCA) to secure the MANET with additional improvements. The MDCA is tested and validated using Qualnet v7.1 simulation tool. This work also introduces a new simulation module for a flooding attack called the resource consumption attack (RCA) using Qualnet v7.1. The results highlight the high efficiency of the MDCA in detecting RCAs in MANETs.


Subject(s)
Floods , Neural Networks, Computer , Risk Assessment , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...