Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
bioRxiv ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38712035

ABSTRACT

Formation of chondromimetic human mesenchymal stem cells (hMSCs) condensations typically required in vitro culture in defined environments. In addition, extended in vitro culture in differentiation media over several weeks is usually necessary prior to implantation, which is costly, time consuming and delays clinical treatment. Here, this study reports on immediately implantable core/shell microgels with a high-density hMSC-laden core and rapidly degradable hydrogel shell. The hMSCs in the core formed cell condensates within 12 hours and the oxidized and methacrylated alginate (OMA) hydrogel shells were completely degraded within 3 days, enabling spontaneous and precipitous fusion of adjacent condensed aggregates. By delivering transforming growth factor-ß1 (TGF-ß1) within the core, the fused condensates were chondrogenically differentiated and formed cartilage microtissues. Importantly, these hMSC-laden core/shell microgels, fabricated without any in vitro culture, were subcutaneously implanted into mice and shown to form cartilage tissue via cellular condensations in the core after 3 weeks. This innovative approach to form cell condensations in situ without in vitro culture that can fuse together with each other and with host tissue and be matured into new tissue with incorporated bioactive signals, allows for immediate implantation and may be a platform strategy for cartilage regeneration and other tissue engineering applications.

2.
bioRxiv ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38617208

ABSTRACT

Compromised vascular supply and insufficient neovascularization impede bone repair, increasing risk of non-union. Cyr61, Cysteine-rich angiogenic inducer of 61kD (also known as CCN1), is a matricellular growth factor that is regulated by mechanical cues during fracture repair. Here, we map the distribution of endogenous Cyr61 during bone repair and evaluate the effects of recombinant Cyr61 delivery on vascularized bone regeneration. In vitro, Cyr61 treatment did not alter chondrogenesis or osteogenic gene expression, but significantly enhanced angiogenesis. In a mouse femoral fracture model, Cyr61 delivery did not alter cartilage or bone formation, but accelerated neovascularization during fracture repair. Early initiation of ambulatory mechanical loading disrupted Cyr61-induced neovascularization. Together, these data indicate that Cyr61 delivery can enhance angiogenesis during bone repair, particularly for fractures with stable fixation, and may have therapeutic potential for fractures with limited blood vessel supply.

3.
SLAS Technol ; 29(2): 100095, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37385542

ABSTRACT

The ability of cells to sense and respond to their physical environment plays a fundamental role in a broad spectrum of biological processes. As one of the most essential molecular force sensors and transducers found in cell membranes, mechanosensitive (MS) ion channels can convert mechanical inputs into biochemical or electrical signals to mediate a variety of sensations. The bottom-up construction of cell-sized compartments displaying cell-like organization, behaviors, and complexity, also known as synthetic cells, has gained popularity as an experimental platform to characterize biological functions in isolation. By reconstituting MS channels in the synthetic lipid bilayers, we envision using mechanosensitive synthetic cells for several medical applications. Here, we describe three different concepts for using ultrasound, shear stress, and compressive stress as mechanical stimuli to activate drug release from mechanosensitive synthetic cells for disease treatments.


Subject(s)
Artificial Cells , Mechanotransduction, Cellular/physiology , Ion Channels/metabolism , Cell Membrane/metabolism
4.
Trends Biotechnol ; 42(3): 339-352, 2024 03.
Article in English | MEDLINE | ID: mdl-37852853

ABSTRACT

Advancements in 3D bioprinting have been hindered by the trade-off between printability and biological functionality. Existing bioinks struggle to meet both requirements simultaneously. However, new types of bioinks composed of densely packed microgels promise to address this challenge. These bioinks possess intrinsic porosity, allowing for cell growth, oxygen and nutrient transport, and better immunomodulatory properties, leading to superior biological functions. In this review, we highlight key trends in the development of these granular bioinks. Using examples, we demonstrate how granular bioinks overcome the trade-off between printability and cell function. Granular bioinks show promise in 3D bioprinting, yet understanding their unique structure-property-function relationships is crucial to fully leverage the transformative capabilities of these new types of bioinks in bioprinting.


Subject(s)
Bioprinting , Hydrogels , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
6.
Bioengineering (Basel) ; 10(9)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37760099

ABSTRACT

The surface zone of articular cartilage is the first area impacted by cartilage defects, commonly resulting in osteoarthritis. Chondrocytes in the surface zone of articular cartilage synthesize and secrete lubricin, a proteoglycan that functions as a lubricant protecting the deeper layers from shear stress. Notably, 3D bioprinting is a tissue engineering technique that uses cells encapsulated in biomaterials to fabricate 3D constructs. Gelatin methacrylate (GelMA) is a frequently used biomaterial for 3D bioprinting cartilage. Oxidized methacrylated alginate (OMA) is a chemically modified alginate designed for its tunable degradation rate and mechanical properties. To determine an optimal combination of GelMA and OMA for lubricin expression, we used our novel high-throughput human articular chondrocyte reporter system. Primary human chondrocytes were transduced with PRG4 (lubricin) promoter-driven Gaussia luciferase, allowing for temporal assessment of lubricin expression. A lubricin expression-driven Design of Experiment screen and subsequent validation identified 14% GelMA/2% OMA for further study. Therefore, DoE optimized 14% GelMA/2% OMA, 14% GelMA control, and 16% GelMA (total solid content control) were 3D bioprinted. The combination of lubricin protein expression and shape retention over the 22 days in culture, successfully determined the 14% GelMA/2%OMA to be the optimal formulation for lubricin secretion. This strategy allows for rapid analysis of the role(s) of biomaterial composition, stiffness or other cell manipulations on lubricin expression by chondrocytes, which may improve therapeutic strategies for cartilage regeneration.

7.
Adv Healthc Mater ; : e2302502, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37616035

ABSTRACT

Human organoids have the potential to revolutionize in vitro disease modeling by providing multicellular architecture and function that are similar to those in vivo. This innovative and evolving technology, however, still suffers from assay throughput and reproducibility to enable high-throughput screening (HTS) of compounds due to cumbersome organoid differentiation processes and difficulty in scale-up and quality control. Using organoids for HTS is further challenged by the lack of easy-to-use fluidic systems that are compatible with relatively large organoids. Here, these challenges are overcome by engineering "microarray three-dimensional (3D) bioprinting" technology and associated pillar and perfusion plates for human organoid culture and analysis. High-precision, high-throughput stem cell printing, and encapsulation techniques are demonstrated on a pillar plate, which is coupled with a complementary deep well plate and a perfusion well plate for static and dynamic organoid culture. Bioprinted cells and spheroids in hydrogels are differentiated into liver and intestine organoids for in situ functional assays. The pillar/perfusion plates are compatible with standard 384-well plates and HTS equipment, and thus may be easily adopted in current drug discovery efforts.

8.
Angew Chem Int Ed Engl ; 62(41): e202308509, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37607024

ABSTRACT

Stimuli-responsive hydrogels are intriguing biomimetic materials. Previous efforts to develop mechano-responsive hydrogels have mostly relied on chemical modifications of the hydrogel structures. Here, we present a simple, generalizable strategy that confers mechano-responsive behavior on hydrogels. Our approach involves embedding hybrid vesicles, composed of phospholipids and amphiphilic block copolymers, within the hydrogel matrix to act as signal transducers. Under mechanical stress, these vesicles undergo deformation and rupture, releasing encapsulated compounds that can control the hydrogel network. To demonstrate this concept, we embedded vesicles containing ethylene glycol tetraacetic acid (EGTA), a calcium chelator, into a calcium-crosslinked alginate hydrogel. When compressed, the released EGTA sequesters calcium ions and degrades the hydrogel. This study provides a novel method for engineering mechano-responsive hydrogels that may be useful in various biomedical applications.

9.
Biomaterials ; 300: 122179, 2023 09.
Article in English | MEDLINE | ID: mdl-37315386

ABSTRACT

Oxygenating biomaterials can alleviate anoxic stress, stimulate vascularization, and improve engraftment of cellularized implants. However, the effects of oxygen-generating materials on tissue formation have remained largely unknown. Here, we investigate the impact of calcium peroxide (CPO)-based oxygen-generating microparticles (OMPs) on the osteogenic fate of human mesenchymal stem cells (hMSCs) under a severely oxygen deficient microenvironment. To this end, CPO is microencapsulated in polycaprolactone to generate OMPs with prolonged oxygen release. Gelatin methacryloyl (GelMA) hydrogels containing osteogenesis-inducing silicate nanoparticles (SNP hydrogels), OMPs (OMP hydrogels), or both SNP and OMP (SNP/OMP hydrogels) are engineered to comparatively study their effect on the osteogenic fate of hMSCs. OMP hydrogels associate with improved osteogenic differentiation under both normoxic and anoxic conditions. Bulk mRNAseq analyses suggest that OMP hydrogels under anoxia regulate osteogenic differentiation pathways more strongly than SNP/OMP or SNP hydrogels under either anoxia or normoxia. Subcutaneous implantations reveal a stronger host cell invasion in SNP hydrogels, resulting in increased vasculogenesis. Furthermore, time-dependent expression of different osteogenic factors reveals progressive differentiation of hMSCs in OMP, SNP, and SNP/OMP hydrogels. Our work demonstrates that endowing hydrogels with OMPs can induce, improve, and steer the formation of functional engineered living tissues, which holds potential for numerous biomedical applications, including tissue regeneration and organ replacement therapy.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Humans , Cell Differentiation , Tissue Engineering/methods , Hydrogels/pharmacology , Hypoxia/metabolism , Oxygen/metabolism
10.
Trends Biotechnol ; 41(11): 1400-1416, 2023 11.
Article in English | MEDLINE | ID: mdl-37169690

ABSTRACT

In human vascular anatomy, blood flows from the heart to organs and tissues through a hierarchical vascular tree, comprising large arteries that branch into arterioles and further into capillaries, where gas and nutrient exchange occur. Engineering a complete, integrated vascular hierarchy with vessels large enough to suture, strong enough to withstand hemodynamic forces, and a branching structure to permit immediate perfusion of a fluidic circuit across scales would be transformative for regenerative medicine (RM), enabling the translation of engineered tissues of clinically relevant size, and perhaps whole organs. How close are we to solving this biological plumbing problem? In this review, we highlight advances in engineered vasculature at individual scales and focus on recent strategies to integrate across scales.


Subject(s)
Capillaries , Tissue Engineering , Humans , Capillaries/anatomy & histology , Capillaries/physiology , Regenerative Medicine , Heart
11.
Front Bioeng Biotechnol ; 11: 1111356, 2023.
Article in English | MEDLINE | ID: mdl-36923455

ABSTRACT

Poor nutrient transport through the cartilage endplate (CEP) is a key factor in the etiology of intervertebral disc degeneration and may hinder the efficacy of biologic strategies for disc regeneration. Yet, there are currently no treatments for improving nutrient transport through the CEP. In this study we tested whether intradiscal delivery of a matrix-modifying enzyme to the CEP improves solute transport into whole human and bovine discs. Ten human lumbar motion segments harvested from five fresh cadaveric spines (38-66 years old) and nine bovine coccygeal motion segments harvested from three adult steers were treated intradiscally either with collagenase enzyme or control buffer that was loaded in alginate carrier. Motion segments were then incubated for 18 h at 37 °C, the bony endplates removed, and the isolated discs were compressed under static (0.2 MPa) and cyclic (0.4-0.8 MPa, 0.2 Hz) loads while submerged in fluorescein tracer solution (376 Da; 0.1 mg/ml). Fluorescein concentrations from site-matched nucleus pulposus (NP) samples were compared between discs. CEP samples from each disc were digested and assayed for sulfated glycosaminoglycan (sGAG) and collagen contents. Results showed that enzymatic treatment of the CEP dramatically enhanced small solute transport into the disc. Discs with enzyme-treated CEPs had up to 10.8-fold (human) and 14.0-fold (bovine) higher fluorescein concentration in the NP compared to site-matched locations in discs with buffer-treated CEPs (p < 0.0001). Increases in solute transport were consistent with the effects of enzymatic treatment on CEP composition, which included reductions in sGAG content of 33.5% (human) and 40% (bovine). Whole disc biomechanical behavior-namely, creep strain and disc modulus-was similar between discs with enzyme- and buffer-treated CEPs. Taken together, these findings demonstrate the potential for matrix modification of the CEP to improve the transport of small solutes into whole intact discs.

12.
bioRxiv ; 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36993405

ABSTRACT

Human organoids have potential to revolutionize in vitro disease modeling by providing multicellular architecture and function that are similar to those in vivo . This innovative and evolving technology, however, still suffers from assay throughput and reproducibility to enable high-throughput screening (HTS) of compounds due to cumbersome organoid differentiation processes and difficulty in scale-up and quality control. Using organoids for HTS is further challenged by lack of easy-to-use fluidic systems that are compatible with relatively large organoids. Here, we overcome these challenges by engineering "microarray three-dimensional (3D) bioprinting" technology and associated pillar and perfusion plates for human organoid culture and analysis. High-precision, high-throughput stem cell printing and encapsulation techniques were demonstrated on a pillar plate, which was coupled with a complementary deep well plate and a perfusion well plate for static and dynamic organoid culture. Bioprinted cells and spheroids in hydrogels were differentiated into liver and intestine organoids for in situ functional assays. The pillar/perfusion plates are compatible with standard 384-well plates and HTS equipment, and thus may be easily adopted in current drug discovery efforts.

13.
Biophys J ; 122(1): 82-89, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36419349

ABSTRACT

Thermally stable or resilient proteins are usually stabilized at intermediate states during thermal stress to prevent irreversible denaturation. However, the mechanism by which their conformations are stabilized to resist high temperature remains elusive. Herein, we investigate the conformational and thermal stability of transforming growth factor-ß1 (TGF-ß1), a key signaling molecule in numerous biological pathways. We report that the TGF-ß1 molecule is thermally resilient as it gradually denatures during thermal treatment when the temperature increases to 90°C-100°C but recovers native folding when the temperature decreases. Using this protein as a model, further studies show the maintenance of its bioactive functional properties after thermal stress, as demonstrated by differentiation induction of NIH/3T3 fibroblasts and human mesenchymal stem cells into myofibroblasts and chondrocytes, respectively. Molecular dynamic simulations revealed that although the protein's secondary structure is unstable under thermal stress, its conformation is partially stabilized by newly formed turns. Given the importance and/or prevalence of TGF-ß1 in biological processes, potential therapeutics, and the human diet, our findings encourage consideration of its thermostability for biomedical applications and nutrition.


Subject(s)
Myofibroblasts , Transforming Growth Factor beta1 , Humans , Cell Differentiation , Fibroblasts/metabolism , Protein Conformation , Signal Transduction , Transforming Growth Factor beta1/chemistry
14.
Sci Adv ; 8(51): eadc8753, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36542703

ABSTRACT

Salivary gland acinar cells are severely depleted after radiotherapy for head and neck cancer, leading to loss of saliva and extensive oro-digestive complications. With no regenerative therapies available, organ dysfunction is irreversible. Here, using the adult murine system, we demonstrate that radiation-damaged salivary glands can be functionally regenerated via sustained delivery of the neurogenic muscarinic receptor agonist cevimeline. We show that endogenous gland repair coincides with increased nerve activity and acinar cell division that is limited to the first week after radiation, with extensive acinar cell degeneration, dysfunction, and cholinergic denervation occurring thereafter. However, we found that mimicking cholinergic muscarinic input via sustained local delivery of a cevimeline-alginate hydrogel was sufficient to regenerate innervated acini and retain physiological saliva secretion at nonirradiated levels over the long term (>3 months). Thus, we reveal a previously unknown regenerative approach for restoring epithelial organ structure and function that has extensive implications for human patients.

15.
Small ; 18(36): e2202196, 2022 09.
Article in English | MEDLINE | ID: mdl-35973946

ABSTRACT

4D bioprinting techniques that facilitate formation of shape-changing scaffold-free cell condensates with prescribed geometries have yet been demonstrated. Here, a simple 4D bioprinting approach is presented that enables formation of a shape-morphing cell condensate-laden bilayer system. The strategy produces scaffold-free cell condensates which morph over time into predefined complex shapes. Cell condensate-laden bilayers with specific geometries are readily fabricated by bioprinting technologies. The bilayers have tunable deformability and microgel (MG) degradation, enabling controllable morphological transformations and on-demand liberation of deformed cell condensates. With this system, large cell condensate-laden constructs with various complex shapes are obtained. As a proof-of-concept study, the formation of the letter "C"- and helix-shaped robust cartilage-like tissues differentiated from human mesenchymal stem cells (hMSCs) is demonstrated. This system brings about a versatile 4D bioprinting platform idea that is anticipated to broaden and facilitate the applications of cell condensation-based 4D bioprinting.


Subject(s)
Bioprinting , Microgels , Bioprinting/methods , Cartilage , Cell Differentiation , Humans , Hydrogels , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds
16.
Adv Funct Mater ; 32(24)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35692510

ABSTRACT

Corneal injuries are a major cause of blindness worldwide. To restore corneal integrity and clarity, there is a need for regenerative bio-integrating materials for in-situ repair and replacement of corneal tissue. Here, we introduce Light-curable COrnea Matrix (LC-COMatrix), a tunable material derived from decellularized porcine cornea extracellular matrix containing un-denatured collagen and sulfated glycosaminoglycans. It is a functionalized hydrogel with proper swelling behavior, biodegradation, and viscosity that can be cross-linked in situ with visible light, providing significantly enhanced biomechanical strength, stability, and adhesiveness. Cross-linked LC-COMatrix strongly adheres to human corneas ex vivo and effectively closes full-thickness corneal perforations with tissue loss. Likewise, in vivo, LC-COMatrix seals large corneal perforations, replaces partial-corneal stromal defects and bio-integrates into the tissue in rabbit models. LC-COMatrix is a natural ready-to-apply bio-integrating adhesive that is representative of native corneal matrix with potential applications in corneal and ocular surgeries.

17.
Bioact Mater ; 15: 185-193, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35386348

ABSTRACT

Recently, 3D bioprinting has been explored as a promising technology for biomedical applications with the potential to create complex structures with precise features. Cell encapsulated hydrogels composed of materials such as gelatin, collagen, hyaluronic acid, alginate and polyethylene glycol have been widely used as bioinks for 3D bioprinting. However, since most hydrogel-based bioinks may not allow rapid stabilization immediately after 3D bioprinting, achieving high resolution and fidelity to the intended architecture is a common challenge in 3D bioprinting of hydrogels. In this study, we have utilized shear-thinning and self-healing ionically crosslinked oxidized and methacrylated alginates (OMAs) as a bioink, which can be rapidly gelled by its self-healing property after bioprinting and further stabilized via secondary crosslinking. It was successfully demonstrated that stem cell-laden calcium-crosslinked OMA hydrogels can be bioprinted into complicated 3D tissue structures with both high resolution and fidelity. Additional photocrosslinking enables long-term culture of 3D bioprinted constructs for formation of functional tissue by differentiation of encapsulated human mesenchymal stem cells.

18.
Adv Mater ; 34(15): e2109394, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35065000

ABSTRACT

4D bioprinting is promising to build cell-laden constructs (bioconstructs) with complex geometries and functions for tissue/organ regeneration applications. The development of hydrogel-based 4D bioinks, especially those allowing living cell printing, with easy preparation, defined composition, and controlled physical properties is critically important for 4D bioprinting. Here, a single-component jammed micro-flake hydrogel (MFH) system with heterogeneous size distribution, which differs from the conventional granular microgel, has been developed as a new cell-laden bioink for 4D bioprinting. This jammed cytocompatible MFH features scalable production and straightforward composition with shear-thinning, shear-yielding, and rapid self-healing properties. As such, it can be smoothly printed into stable 3D bioconstructs, which can be further cross-linked to form a gradient in cross-linking density when a photoinitiator and a UV absorber are incorporated. After being subject to shape morphing, a variety of complex bioconstructs with well-defined configurations and high cell viability are obtained. Based on this system, 4D cartilage-like tissue formation is demonstrated as a proof-of-concept. The establishment of this versatile new 4D bioink system may open up a number of applications in tissue engineering.


Subject(s)
Bioprinting , Bioprinting/methods , Hydrogels , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds
19.
Bioact Mater ; 7: 324-332, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34466735

ABSTRACT

Formation of graded biomaterials to render shape-morphing scaffolds for 4D biofabrication holds great promise in fabrication of complex structures and the recapitulation of critical dynamics for tissue/organ regeneration. Here we describe a facile generation of an adjustable and robust gradient using a single- or multi-material one-step fabrication strategy for 4D biofabrication. By simply photocrosslinking a mixed solution of a photocrosslinkable polymer macromer, photoinitiator (PI), UV absorber and live cells, a cell-laden gradient hydrogel with pre-programmable deformation can be generated. Gradient formation was demonstrated in various polymers including poly(ethylene glycol) (PEG), alginate, and gelatin derivatives using various UV absorbers that present overlap in UV spectrum with that of the PI UV absorbance spectrum. Moreover, this simple and effective method was used as a universal platform to integrate with other hydrogel-engineering techniques such as photomask-aided microfabrication, photo-patterning, ion-transfer printing, and 3D bioprinting to fabricate more advanced cell-laden scaffold structures. Lastly, proof-of-concept 4D tissue engineering was demonstrated in a study of 4D bone-like tissue formation. The strategy's simplicity along with its versatility paves a new way in solving the hurdle of achieving temporal shape changes in cell-laden single-component hydrogel scaffolds and may expedite the development of 4D biofabricated constructs for biological applications.

20.
Bio Protoc ; 11(21): e4219, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34859133

ABSTRACT

The local delivery of growth factors such as BMP-2 is a well-established strategy for the repair of bone defects. The limitations of such approaches clinically are well documented and can be linked to the need for supraphysiological doses and poor spatio-temporal control of growth factor release in vivo. Using bioprinting techniques, it is possible to generate implants that can deliver cytokines or growth factors with distinct spatiotemporal release profiles and patterns to enhance bone regeneration. Specifically, for bone healing, several growth factors, including vascular endothelial growth factor (VEGF) and bone morphogenic proteins (BMPs), have been shown to be expressed at different phases of the process. This protocol aims to outline how to use bioprinting strategies to deliver growth factors, both alone or in combination, to the site of injury at physiologically relevant dosages such that repair is induced without adverse effects. Here we describe: the printing parameters to generate the polymer mechanical backbone; instructions to generate the different bioinks and allow for the temporal control of both growth factors; and the printing process to develop implants with spatially defined patterns of growth factors for bone regeneration. The novelty of this protocol is the use of multiple-tool fabrication techniques to develop an implant with spatio-temporal control of growth factor delivery for bone regeneration. While the overall aim of this protocol was to develop an implant for bone regeneration, the technique can be modified and used for a variety of regenerative purposes. Graphic abstract: 3D Bioprinting Spatio-Temporally Defined Patterns of Growth Factors to Tightly Control Bone Tissue Regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...