Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 46(2): 1360-1373, 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38392205

ABSTRACT

RNA-binding proteins (RBPs) play an important role in regulating biological processes, such as gene regulation. Understanding their behaviors, for example, their binding site, can be helpful in understanding RBP-related diseases. Studies have focused on predicting RNA binding by means of machine learning algorithms including deep convolutional neural network models. One of the integral parts of modeling deep learning is achieving optimal hyperparameter tuning and minimizing a loss function using optimization algorithms. In this paper, we investigate the role of optimization in the RBP classification problem using the CLIP-Seq 21 dataset. Three optimization methods are employed on the RNA-protein binding CNN prediction model; namely, grid search, random search, and Bayesian optimizer. The empirical results show an AUC of 94.42%, 93.78%, 93.23% and 92.68% on the ELAVL1C, ELAVL1B, ELAVL1A, and HNRNPC datasets, respectively, and a mean AUC of 85.30 on 24 datasets. This paper's findings provide evidence on the role of optimizers in improving the performance of RNA-protein binding prediction.

2.
PeerJ Comput Sci ; 7: e515, 2021.
Article in English | MEDLINE | ID: mdl-34179448

ABSTRACT

The blood-brain barrier plays a crucial role in regulating the passage of 98% of the compounds that enter the central nervous system (CNS). Compounds with high permeability must be identified to enable the synthesis of brain medications for the treatment of various brain diseases, such as Parkinson's, Alzheimer's, and brain tumors. Throughout the years, several models have been developed to solve this problem and have achieved acceptable accuracy scores in predicting compounds that penetrate the blood-brain barrier. However, predicting compounds with "low" permeability has been a challenging task. In this study, we present a deep learning (DL) classification model to predict blood-brain barrier permeability. The proposed model addresses the fundamental issues presented in former models: high dimensionality, class imbalances, and low specificity scores. We address these issues to enhance the high-dimensional, imbalanced dataset before developing the classification model: the imbalanced dataset is addressed using oversampling techniques and the high dimensionality using a non-linear dimensionality reduction technique known as kernel principal component analysis (KPCA). This technique transforms the high-dimensional dataset into a low-dimensional Euclidean space while retaining invaluable information. For the classification task, we developed an enhanced feed-forward deep learning model and a convolutional neural network model. In terms of specificity scores (i.e., predicting compounds with low permeability), the results obtained by the enhanced feed-forward deep learning model outperformed those obtained by other models in the literature that were developed using the same technique. In addition, the proposed convolutional neural network model surpassed models used in other studies in multiple accuracy measures, including overall accuracy and specificity. The proposed approach solves the problem inevitably faced with obtaining low specificity resulting in high false positive rate.

3.
Comput Biol Chem ; 89: 107377, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33010784

ABSTRACT

The rapid development of computational methods and the increasing volume of chemical and biological data have contributed to an immense growth in chemical research. This field of study is known as "chemoinformatics," which is a discipline that uses machine-learning techniques to extract, process, and extrapolate data from chemical structures. One of the significant lines of research in chemoinformatics is the study of blood-brain barrier (BBB) permeability, which aims to identify drug penetration into the central nervous system (CNS). In this research, we attempt to solve the problem of BBB permeability by predicting compounds penetration to the CNS. To accomplish this goal: (i) First, an overview is provided to the field of chemoinformatics, its definition, applications, and challenges, (ii) Second, a broad view is taken to investigate previous machine-learning and deep-learning computational models to solve BBB permeability. Based on the analysis of previous models, three main challenges that collectively affect the classifier performance are identified, which we define as "the triple constraints"; subsequently, we map each constraint to a proposed solution, (iii) Finally, we conclude this endeavor by proposing a deep learning based Recurrent Neural Network model, to predict BBB permeability (RNN-BBB model). Our model outperformed other studies from the literature by scoring an overall accuracy of 96.53%, and a specificity score of 98.08%. The obtained results confirm that addressing the triple constraints substantially improves the classification model capability specifically when predicting compounds with low penetration.


Subject(s)
Blood-Brain Barrier/metabolism , Deep Learning , Models, Biological , Pharmaceutical Preparations/metabolism , Algorithms , Cheminformatics , Databases, Chemical , Permeability , Pharmaceutical Preparations/chemistry , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...