Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Lab ; 69(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36787548

ABSTRACT

BACKGROUND: Testing of blood donors for markers of transfusion-transmitted infections (TTIs) such as HBV, HCV, HIV, HTLV, syphilis, and malaria is mandatory in Saudi Arabia. This study determined the prevalence of all tested TTIs among blood donors in the western region of Saudi Arabia. METHODS: This retrospective study included 5,473 blood donors who attended the blood donation center at the Security Force Hospital (SFH) located in the western region of Saudi Arabia from January 1, 2015 to December 31, 2018. The prevalence of TTIs was determined and classified as per year, gender, age, type of donors (first-time vs. returned donors), category of donation (replacement vs. volunteer), and blood group. RESULTS: All donors (100%) were screened for TTIs by serological assays and nucleic acid tests (NATs). "Reactive" samples to serological assays were as follow: 57 (1.07%) HBsAg, 292 (5.34%) HBsAb, 388 (7.1%) HBcAbs, 13 (0.24%) HCV, 5 (0.09%) HIV, 8 (0.15%) HTLV-I and -II, 21 (0.83%) syphilis, and 0 (0%) malaria. The NAT results for HBV, HCV, and HIV revealed 50 (0.91%), 1 (0.0002%), and 3 (0.05%) reactive samples, respectively. Reactive donations to screening serology tests of syphilis and HTLV-I/-II were neither confirmed nor declined by their corresponding confirmatory assays. Most "reactive" samples to TTI tests were associated with male gender, first-time donor, replacement donation, and O+ blood group. CONCLUSIONS: This study highlights the strong adherence to TTI testing policy and low prevalence of TTI markers among blood donors in the western region of Saudi Arabia.


Subject(s)
Blood Group Antigens , HIV Infections , Hepatitis C , Syphilis , Transfusion Reaction , Humans , Male , Blood Donors , Syphilis/diagnosis , Syphilis/epidemiology , Prevalence , Retrospective Studies , Saudi Arabia/epidemiology , Transfusion Reaction/epidemiology , Hospitals , HIV Infections/diagnosis , HIV Infections/epidemiology , Hepatitis C/diagnosis , Hepatitis C/epidemiology
2.
Brain Sci ; 13(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36831786

ABSTRACT

Finding a link between a hormone and microRNAs (miRNAs) is of great importance since it enables the adjustment of genetic composition or cellular functions without needing gene-level interventions. The dicer-mediated cleavage of precursor miRNAs is an interface link between miRNA and its regulators; any disruption in this process can affect neurogenesis. Besides, the hormonal regulation of miRNAs can occur at the molecular and cellular levels, both directly, through binding to the promoter elements of miRNAs, and indirectly, via regulation of the signaling effects of the post-transcriptional processing proteins. Estrogenic hormones have many roles in regulating miRNAs in the brain. This review discusses miRNAs, their detailed biogenesis, activities, and both the general and estrogen-dependent regulations. Additionally, we highlight the relationship between miR-29, miR-9, and estrogens in the nervous system. Such a relationship could be a possible etiological route for developing various neurodegenerative disorders.

3.
J Cell Physiol ; 237(11): 4021-4036, 2022 11.
Article in English | MEDLINE | ID: mdl-36063496

ABSTRACT

Extracellular vehicles (EVs) are nanoscale lipid bilayer vesicles that carry biologically active biomolecule cargos like proteins, lipids, and nucleic acids (DNA, RNA) outside of the cell. Blood (serum/plasma), urine, and bronchoalveolar lavage fluid are all examples of biofluids from which they may be collected. EVs play a vital role in intracellular communication. The molecular signature of EVs largely depends on the parental cell's status. EVs are classified into two groups, (1) exosomes (originated by endogenous route) and (2) microvesicles (originated from the plasma membrane, also known as ectosomes). The quantity and types of EV cargo vary during normal conditions compared to pathological conditions (chronic inflammatory lung diseases or lung cancer). Consequently, EVs contain novel biomarkers that differ based on the cell type of origin and during lung diseases. Small RNAs (e.g., microRNAs) are transported by EVs, which is one of the most rapidly evolving research areas in the field of EVs biology. EV-mediated cargos transport small RNAs that can result in reprograming the target/recipient cells. Multiple chronic inflammatory lung illnesses, such as chronic obstructive pulmonary disease, asthma, pulmonary hypertension, pulmonary fibrosis, cystic fibrosis, acute lung injury, and lung cancer, have been demonstrated to be regulated by EV. In this review, we will consolidate the current knowledge and literature on the novel role of EVs and their small RNAs concerning chronic lung diseases (CLDs). Additionally, we will also provide better insight into the clinical and translational impact of mesenchymal stem cells-derived EVs as novel therapeutic agents in treating CLDs.


Subject(s)
Exosomes , Extracellular Vesicles , Lung Diseases , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Exosomes/genetics , Exosomes/metabolism , Lung Diseases/genetics , Lung Neoplasms/metabolism
4.
Polymers (Basel) ; 14(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36080637

ABSTRACT

This study aimed to synthesise montelukast-loaded polymeric nanoparticles via the ionic gelation method using chitosan as a natural polymer and tripolyphosphate as a crosslinking agent. Tween 80, hyaluronic acid and leucine were added to modify the physicochemical properties of nanoparticles, reduce the nanoparticles' uptake by alveolar macrophages and improve powder aerosolisation, respectively. The nanoparticles ranged from 220 nm to 383 nm with a polydispersity index of ≤0.50. The zeta potential of nanoparticles ranged from 11 mV to 22 mV, with a drug association efficiency of 46-86%. The simple chitosan nanoparticles (F2) were more spherical in comparison to other formulations (F4-F6), while the roughness of hyaluronic acid (F5) and leucine (F6) added formulations was significantly high er than F2 and Tween 80 added formulation (F4). The DSC and FTIR analysis depict that the physical and chemical properties of the drug were preserved. The release of the drugs from nanoparticles was more sustained in the case of F5 and F6 when compared to F2 and F4 due to the additional coating of hyaluronic acid and leucine. The nanoparticles were amorphous and cohesive and prone to exhalation due to their small size. Therefore, nanoparticles were admixed with lactose microspheres to reduce particle agglomeration and improve powder dispersion from a dry powder inhaler (DPI). The DPI formulations achieved a dispersed fraction of 75 to 90%, a mass median aerodynamic diameter (MMAD) of 1-2 µm and a fine particle fraction (FPF) of 28-83% when evaluated using the Anderson cascade impactor from Handihaler®. Overall, the montelukast-loaded nanoparticles physically admixed with lactose microspheres achieved optimum deposition in the deep lung for potential application in asthmatic patients.

5.
Ann Med ; 53(1): 2332-2344, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34889159

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD), the most predominant cause of dementia, has evolved tremendously with an escalating frequency, mainly affecting the elderly population. An effective means of delaying, preventing, or treating AD is yet to be achieved. The failure rate of dementia drug trials has been relatively higher than in other disease-related clinical trials. Hence, multi-targeted therapeutic approaches are gaining attention in pharmacological developments. AIMS: As an extension of our earlier reports, we have performed docking and molecular dynamic (MD) simulation studies for the same 13 potential ligands against beta-site APP cleaving enzyme 1 (BACE-1) and γ-secretase as a therapeutic target for AD. The In-silico screening of these ligands as potential inhibitors of BACE-1 and γ-secretase was performed using AutoDock enabled PyRx v-0.8. The protein-ligand interactions were analyzed in Discovery Studio 2020 (BIOVIA). The stability of the most promising ligand against BACE-1 and γ-secretase was evaluated by MD simulation using Desmond-2018 (Schrodinger, LLC, NY, USA). RESULTS: The computational screening revealed that the docking energy values for each of the ligands against both the target enzymes were in the range of -7.0 to -10.1 kcal/mol. Among the 13 ligands, 8 (55E, 6Z2, 6Z5, BRW, F1B, GVP, IQ6, and X37) showed binding energies of ≤-8 kcal/mol against BACE-1 and γ-secretase. For the selected enzyme targets, BACE-1 and γ-secretase, 6Z5 displayed the lowest binding energy of -10.1 and -9.8 kcal/mol, respectively. The MD simulation study confirmed the stability of BACE-6Z5 and γ-secretase-6Z5 complexes and highlighted the formation of a stable complex between 6Z5 and target enzymes. CONCLUSION: The virtual screening, molecular docking, and molecular dynamics simulation studies revealed the potential of these multi-enzyme targeted ligands. Among the studied ligands, 6Z5 seems to have the best binding potential and forms a stable complex with BACE-1 and γ-secretase. We recommend the synthesis of 6Z5 for future in-vitro and in-vivo studies.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Aged , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/chemistry , Amyloid Precursor Protein Secretases/metabolism , Humans , Ligands , Molecular Docking Simulation
6.
Phytother Res ; 35(11): 6063-6079, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34679214

ABSTRACT

Polyphenols are a group of diverse chemical compounds present in a wide range of plants. Various biological properties such as antiallergic, antiviral, antibacterial, anticarcinogenic, antiinflammatory, antithrombotic, vasodilatory, and hepatoprotective effect of different polyphenols have been reported in the scientific literature. The major classes of polyphenols are flavonoids, stilbenoids, lignans, and polyphenolic acids. Flavonoids are a large class of food constituents comprising flavones, isoflavanones, flavanones, flavonols, catechins, and anthocyanins sub-classes. Even with seemingly broad biological activities, their use is minimal clinically. Among the other concurrent problems such as limited bioavailability, rapid metabolism, untargeted delivery, the toxicity associated with these polyphenols has been a topic of concern lately. These polyphenols have been reported to result in different forms of toxicity that include organ toxicity, genotoxicity, mutagenicity, cytotoxicity, etc. In the present article, we have tried to unravel the toxicological aspect of these polyphenols to healthy cells. Further high-quality studies are needed to establish the clinical efficacy and toxicology concern leading to further exploration of these polyphenols.


Subject(s)
Antineoplastic Agents , Flavones , Anthocyanins , Flavonoids/toxicity , Polyphenols/toxicity
7.
Curr Pharm Des ; 27(20): 2425-2434, 2021.
Article in English | MEDLINE | ID: mdl-33634754

ABSTRACT

BACKGROUND: With the burgeoning worldwide aging population, the incidence of Alzheimer's disease (AD) and its associated disorders is continuously rising. To appraise other relevant drug targets that could lead to potent enzyme targeting, 13 previously predicted ligands (shown favorable binding with AChE (acetylcholinesterase) and GSK-3 (glycogen synthase kinase) were screened for targeting 3 different enzymes, namely butyrylcholinesterase (BChE), monoamine oxidase A (MAO-A), and monoamine oxidase B (MAO-B) to possibly meet the unmet medical need of better AD treatment. MATERIALS AND METHODS: The study utilized in silico screening of 13 ligands against BChE, MAO-A and MAOB using PyRx-Python prescription 0.8. The visualization of the active interaction of studied compounds with targeted proteins was performed by Discovery Studio 2020 (BIOVIA). RESULTS: The computational screening of studied ligands revealed the docking energies in the range of -2.4 to -11.3 kcal/mol for all the studied enzymes. Among the 13 ligands, 8 ligands (55E, 6Z2, 6Z5, BRW, F1B, GVP, IQ6, and X37) showed the binding energies of ≤ -8.0 kcal/mol towards BChE, MAO-A and MAO-B. The ligand 6Z5 was found to be the most potent inhibitor of BChE and MAO-B, with a binding energy of -9.7 and -10.4 kcal mol, respectively. Molecular dynamics simulation of BChE-6Z5 and MAO-B-6Z5 complex confirmed the formation of a stable complex. CONCLUSION: Our computational screening, molecular docking, and molecular dynamics simulation studies revealed that the above-mentioned enzymes targeted ligands might expedite the future design of potent anti-AD drugs generated on this chemical scaffold.


Subject(s)
Alzheimer Disease , Butyrylcholinesterase , Acetylcholinesterase/metabolism , Aged , Alzheimer Disease/drug therapy , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Glycogen Synthase Kinase 3 , Humans , Ligands , Molecular Docking Simulation , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL