Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0304685, 2024.
Article in English | MEDLINE | ID: mdl-38900736

ABSTRACT

The nonlinear effects of thermal radiation on the free convection flow of certain nanofluids along a heated wall are studied numerically using an original finite-difference method. Nanofluids are used to improve the performance of flat and curved integrated photovoltaic modules. The partial differential equations governing the flow are difficult to solve due to the strong non-linearity of the radiative term. In contrast to previous studies, the problem is solved directly without linearization by Rosseland's nonlinear approximation. The proposed numerical method is validated with results from the literature. The effects of nonlinearity and various physical parameters such as time, volume fraction and radiation parameter on the velocity, temperature, Nusselt number and skin friction coefficient of the CuO-water nanofluid are analyzed and presented graphically. A comparative study between the solutions given by the linear and non-linear problems reveals that Rosseland's linear approximation is no longer valid when the effect of thermal radiation is significant. On the other hand, the non-linear model better reflects the physical phenomena involved in the cooling process. Finally, a comparison of the performance of five nanofluids (CuO, Ag, Al2O3, Cu and TiO2 in water) shows that the Cu-water nanofluid performs best, with a high heat transfer rate and low shear stresses.


Subject(s)
Nonlinear Dynamics , Nanotechnology/methods , Copper/chemistry , Models, Theoretical , Solar Energy , Hydrodynamics , Temperature
2.
Materials (Basel) ; 16(10)2023 May 14.
Article in English | MEDLINE | ID: mdl-37241347

ABSTRACT

This work comprehensively studies both the photocatalytic degradation and the adsorption process of Congo red dye on the surface of a mixed-phase copper oxide-graphene heterostructure nanocomposite. Laser-induced pristine graphene and graphene doped with different CuO concentrations were used to study these effects. Raman spectra showed a shift in the D and G bands of the graphene due to incorporating copper phases into the laser-induced graphene. The XRD confirmed that the laser beam was able to reduce the CuO phase to Cu2O and Cu phases, which were embedded into the graphene. The results elucidate incorporating Cu2O molecules and atoms into the graphene lattice. The production of disordered graphene and the mixed phases of oxides and graphene were validated by the Raman spectra. It is noted from the spectra that the D site changed significantly after the addition of doping, which indicates the incorporation of Cu2O in the graphene. The impact of the graphene content was examined with 0.5, 1.0, and 2.0 mL of CuO. The findings of the photocatalysis and adsorption studies showed an improvement in the heterojunction of copper oxide and graphene, but a significant improvement was noticed with the addition of graphene with CuO. The outcomes demonstrated the compound's potential for photocatalytic use in the degradation of Congo red.

3.
Polymers (Basel) ; 15(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37050269

ABSTRACT

Polyaniline fibers were prepared in the presence of anionic surfactant in an ice medium to nucleate in one dimension and were compared to bulk polyaniline prepared at an optimum temperature. Fourier-transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) were used to investigate the structural analysis of the prepared samples. A conductivity study reveals that polyaniline fibers have high conductivity compared to bulk polyaniline. Hydrogen storage measurements confirm that the polyaniline fibers adsorbed approximately 86% of the total actual capacity of 8-8.5 wt% in less than 9 min, and desorption occurs at a lower temperature, releasing approximately 1.5 wt% of the hydrogen gases when the pressure is reduced further to 1 bar.

4.
J Phys Condens Matter ; 34(20)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35235911

ABSTRACT

Superconductivity in graphene-based systems has recently attracted much attention, as either intrinsic behavior or induced by proximity to a superconductor may lead to interesting topological phases and symmetries of the pairing function. A prominent system considers the pairing to have chiral symmetry. The question arises as to the effect of possible spin-orbit coupling on the resulting superconducting quasiparticle (QP) spectrum. Utilizing a Bogolyubov-de Gennes (BdG) Hamiltonian, we explore the interplay of different interaction terms in the system, and their role in generating complex Berry curvatures in the QP spectrum, as well as non-trivial topological behavior. We demonstrate that the topology of the BdG Hamiltonian in these systems may result in the appearance of edge states along the zigzag edges of nanoribbons in the appropriate regime. For suitable chemical potential and superconducting pairing strength, we find the appearance of robust midgap states at zigzag edges, well protected by large excitation gaps and momentum transfer.

SELECTION OF CITATIONS
SEARCH DETAIL
...