Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 11: 1666, 2020.
Article in English | MEDLINE | ID: mdl-32793155

ABSTRACT

A large portion of the earth's surface consists of arid, semi-arid and hyper-arid lands. Life in these regions is profoundly challenged by harsh environmental conditions of water limitation, high levels of solar radiation and temperature fluctuations, along with soil salinity and nutrient deficiency, which have serious consequences on plant growth and survival. In recent years, plants that grow in such extreme environments and their naturally associated beneficial microbes have attracted increased interest. The rhizosphere, rhizosheath, endosphere, and phyllosphere of desert plants display a perfect niche for isolating novel microbes. They are well adapted to extreme environments and offer an unexploited reservoir for bio-fertilizers and bio-control agents against a wide range of abiotic and biotic stresses that endanger diverse agricultural ecosystems. Their properties can be used to improve soil fertility, increase plant tolerance to various environmental stresses and crop productivity as well as benefit human health and provide enough food for a growing human population in an environment-friendly manner. Several initiatives were launched to discover the possibility of using beneficial microbes. In this review, we will be describing the efforts to explore the bacterial diversity associated with desert plants in the arid, semi-arid, and hyper-arid regions, highlighting the latest discoveries and applications of plant growth promoting bacteria from the most studied deserts around the world.

2.
Plant Sci ; 280: 228-240, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30824001

ABSTRACT

Salinity severely hampers crop productivity worldwide and plant growth promoting bacteria could serve as a sustainable solution to improve plant growth under salt stress. However, the molecular mechanisms underlying salt stress tolerance promotion by beneficial bacteria remain unclear. In this work, six bacterial isolates from four different desert plant species were screened for their biochemical plant growth promoting traits and salinity stress tolerance promotion of the unknown host plant Arabidopsis thaliana. Five of the isolates induced variable root phenotypes but could all increase plant shoot and root weight under salinity stress. Inoculation of Arabidopsis with five isolates under salinity stress resulted in tissue-specific transcriptional changes of ion transporters and reduced Na+/K+ shoot ratios. The work provides first insights into the possible mechanisms and the commonality by which phylogenetically diverse bacteria from different desert plants induce salinity stress tolerance in Arabidopsis. The bacterial isolates provide new tools for studying abiotic stress tolerance mechanisms in plants and a promising agricultural solution for increasing crop yields in semi-arid regions.


Subject(s)
Arabidopsis/microbiology , Bacteria/classification , Bacterial Physiological Phenomena , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Desert Climate , Endophytes , Ion Transport , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Phylogeny , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/microbiology , Plant Roots/physiology , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/microbiology , Plant Shoots/physiology , Potassium/analysis , Salt Stress , Salt Tolerance , Sodium/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...