Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Res Hepatol Gastroenterol ; 48(7): 102377, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38772519

ABSTRACT

The recent FDA approval of Rezdiffra (resmetirom), an oral partial agonist of the thyroid hormone receptor-beta (THR-beta), for the treatment of noncirrhotic non-alcoholic steatohepatitis (NASH) with moderate to advanced fibrosis, has challenged conventional approaches to NASH drug development. Despite extensive efforts targeting typical pathways involved in NASH progression, such as lipogenesis, oxidative stress, and inflammation, these approaches have yet to yield any approved therapies. The success of resmetirom highlights the potential advantages of targeting THR-beta, which exerts pleiotropic effects on multiple pathways involved in NASH pathogenesis, including lipid metabolism, glucose homeostasis, and inflammation. In the phase 3 MAESTRONASH trial, resmetirom significantly improved NASH resolution, fibrosis, and LDL cholesterol levels compared to placebo, with a favorable safety profile. The tissue-specific action of resmetirom may also contribute to its efficacy and safety. The approval of resmetirom has opened new avenues for NASH drug development, emphasizing the importance of exploring novel mechanisms of action, developing targeted therapies, and embracing a more comprehensive approach to treatment. As the global burden of NASH continues to grow, the lessons learned from the success of resmetirom should inform future drug development strategies, offering hope to the millions of patients affected by this disease worldwide.

2.
Pharmaceutics ; 16(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38543264

ABSTRACT

Alginate is a natural biopolymer widely studied for pharmaceutical applications due to its biocompatibility, low toxicity, and mild gelation abilities. This review summarizes recent advances in alginate-based encapsulation systems for targeted drug delivery. Alginate formulations like microparticles, nanoparticles, microgels, and composites fabricated by methods including ionic gelation, emulsification, spray drying, and freeze drying enable tailored drug loading, enhanced stability, and sustained release kinetics. Alginate microspheres prepared by spray drying or ionic gelation provide gastric protection and colon-targeted release of orally delivered drugs. Alginate nanoparticles exhibit enhanced cellular uptake and tumor-targeting capabilities through the enhanced permeation and retention effect. Crosslinked alginate microgels allow high drug loading and controlled release profiles. Composite alginate gels with cellulose, chitosan, or inorganic nanomaterials display improved mechanical properties, mucoadhesion, and tunable release kinetics. Alginate-based wound dressings containing antimicrobial nanoparticles promote healing of burns and chronic wounds through sustained topical delivery. Although alginate is well-established as a pharmaceutical excipient, more extensive in vivo testing is needed to assess clinical safety and efficacy of emerging formulations prior to human trials. Future opportunities include engineered systems combining stimuli-responsiveness, active targeting, and diagnostic capabilities. In summary, this review discusses recent advances in alginate encapsulation techniques for oral, transdermal, and intravenous delivery, with an emphasis on approaches enabling targeted and sustained drug release for enhanced therapeutic outcomes.

3.
Pharmaceutics ; 16(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38399221

ABSTRACT

Turmeric contains curcumin, a naturally occurring compound with noted anti-inflammatory and antioxidant properties that may help fight cancer. Curcumin is readily available, nontoxic, and inexpensive. At high doses, it has minimal side effects, suggesting it is safe for human use. However, curcumin has extremely poor bioavailability and biodistribution, which further hamper its clinical applications. It is commonly administered through oral and transdermal routes in different forms, where the particle size is one of the most common barriers that decreases its absorption through biological membranes on the targeted sites and limits its clinical effectiveness. There are many studies ongoing to overcome this problem. All of this motivated us to conduct this review that discusses the fabrication of polymer-based curcumin-loaded formulation as an advanced drug delivery system and addresses different approaches to overcoming the existing barriers and improving its bioavailability and biodistribution to enhance the therapeutic effects against cancer and other diseases.

4.
Biomedicines ; 11(7)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37509531

ABSTRACT

Leukemia, a condition characterized by the abnormal proliferation of blood cells, poses significant challenges in cancer treatment. Thymoquinone (TQ), a bioactive compound derived from black seed, has demonstrated anticancer properties, including telomerase inhibition and the induction of apoptosis. However, TQ's poor solubility and limited bioavailability hinder its clinical application. This study explored the use of Sulfobutylether-ß-cyclodextrin (SBE-ß-CD), a cyclodextrin derivative, to enhance the solubility and stability of TQ for leukemia treatment. SBE-ß-CD offers low hemolytic activity and has been successfully employed in controlled drug release systems. The study investigated the formation of inclusion complexes between TQ and SBE-ß-CD and evaluated their effects on leukemia cell growth and telomerase activity. The results indicated that the TQ/SBE-ß-CD complex exhibited improved solubility and enhanced cytotoxic effects against K-562 leukemia cells compared to TQ alone, suggesting the potential of SBE-ß-CD as a drug delivery system for TQ. The annexin V-FITC assay demonstrated increased apoptosis, while the qPCR quantification assay revealed reduced telomerase activity in leukemia cells treated with TQ/SBE-ß-CD, supporting its anti-leukemic potential. The molecular docking analysis indicated a strong binding affinity between TQ and telomerase. However, further research is needed to optimize the apoptotic effects and minimize necrosis induction. In conclusion, TQ/SBE-ß-CD shows promise as a novel strategy for leukemia treatment by inhibiting telomerase and enhancing the cytotoxic effects of TQ, offering a potential solution to overcome the limitations of TQ's poor solubility and bioavailability.

5.
Molecules ; 28(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37241838

ABSTRACT

Thymoquinone (TQ) is a quinone derived from the black seed Nigella sativa and has been extensively studied in pharmaceutical and nutraceutical research due to its therapeutic potential and pharmacological properties. Although the chemopreventive and potential anticancer effects of TQ have been reported, its limited solubility and poor delivery remain the major limitations. In this study, we aimed to characterize the inclusion complexes of TQ with Sulfobutylether-ß-cyclodextrin (SBE-ß-CD) at four different temperatures (293-318 K). Additionally, we compared the antiproliferative activity of TQ alone to TQ complexed with SBE-ß-CD on six different cancer cell lines, including colon, breast, and liver cancer cells (HCT-116, HT-29, MDA-MB-231, MCF-7, SK-BR-3, and HepG2), using an MTT assay. We calculated the thermodynamic parameters (ΔH, ΔS, and ΔG) using the van't Holf equation. The inclusion complexes were characterized by X-ray diffraction (XRD), Fourier transforms infrared (FT-IR), and molecular dynamics using the PM6 model. Our findings revealed that the solubility of TQ was improved by ≥60 folds, allowing TQ to penetrate completely into the cavity of SBE-ß-CD. The IC50 values of TQ/SBE-ß-CD ranged from 0.1 ± 0.01 µg/mL against SK-BR-3 human breast cancer cells to 1.2 ± 0.16 µg/mL against HCT-116 human colorectal cancer cells, depending on the cell line. In comparison, the IC50 values of TQ alone ranged from 0.2 ± 0.01 µg/mL to 4.7 ± 0.21 µg/mL. Overall, our results suggest that SBE-ß-CD can enhance the anticancer effect of TQ by increasing its solubility and bioavailability and cellular uptake. However, further studies are necessary to fully understand the underlying mechanisms and potential side effects of using SBE-ß-CD as a drug delivery system for TQ.


Subject(s)
beta-Cyclodextrins , Humans , Spectroscopy, Fourier Transform Infrared/methods , beta-Cyclodextrins/pharmacology , Benzoquinones/pharmacology , Solubility
6.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36678606

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of liver disease. Orthosiphon aristatus (Blume) Miq, a traditional plant in South Asia, has previously been shown to attenuate obesity and hyperglycaemic conditions. Eight weeks of feeding C57BL/6 mice with the standardized O. aristatus extract (400 mg/kg) inhibited the progression of NAFLD. Liver enzymes including alanine aminotransferase and aspartate transaminase were significantly reduced in treated mice by 74.2% ± 7.69 and 52.8% ± 7.83, respectively. Furthermore, the treated mice showed a reduction in serum levels of glucose (50% ± 5.71), insulin (70.2% ± 12.09), total cholesterol (27.5% ± 15.93), triglycerides (63.2% ± 16.5), low-density lipoprotein (62.5% ± 4.93) and atherogenic risk index relative to the negative control. Histologically, O. aristatus reversed hepatic fat accumulation and reduced NAFLD severity. Notably, our results showed the antioxidant activity of O. aristatus via increased superoxide dismutase activity and a reduction of hepatic malondialdehyde levels. In addition, the levels of serum pro-inflammatory mediators (IL-6 and TNFα) decreased, indicating anti-inflammatory activity. The aqueous, hydroethanolic and ethanolic fractions of O. aristatus extract significantly reduced intracellular fat accumulation in HepG2 cells that were treated with palmitic-oleic acid. Together, these findings suggest that antioxidant activities are the primary mechanism of action of O. aristatus underlying the anti-NAFLD effects.

7.
Molecules ; 27(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35164140

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) embraces several forms of liver disorders involving fat disposition in hepatocytes ranging from simple steatosis to the severe stage, namely, non-alcoholic steatohepatitis (NASH). Recently, several experimental in vivo animal models for NAFLD/NASH have been established. However, no reproducible experimental animal model displays the full spectrum of pathophysiological, histological, molecular, and clinical features associated with human NAFLD/NASH progression. Although methionine-choline-deficient (MCD) diet and high-fat diet (HFD) models can mimic histological and metabolic abnormalities of human disease, respectively, the molecular signaling pathways are extremely important for understanding the pathogenesis of the disease. This review aimed to assess the differences in gene expression patterns and NAFLD/NASH progression pathways among the most common dietary animal models, i.e., HFD- and MCD diet-fed animals. Studies showed that the HFD and MCD diet could induce either up- or downregulation of the expression of genes and proteins that are involved in lipid metabolism, inflammation, oxidative stress, and fibrogenesis pathways. Interestingly, the MCD diet model could spontaneously develop liver fibrosis within two to four weeks and has significant effects on the expression of genes that encode proteins and enzymes involved in the liver fibrogenesis pathway. However, such effects in the HFD model were found to occur after 24 weeks with insulin resistance but appear to cause less severe fibrosis. In conclusion, assessing the abnormal gene expression patterns caused by different diet types provides valuable information regarding the molecular mechanisms of NAFLD/NASH and predicts the clinical progression of the disease. However, expression profiling studies concerning genetic variants involved in the development and progression of NAFLD/NASH should be conducted.


Subject(s)
Choline Deficiency , Diet, High-Fat/adverse effects , Hepatocytes/metabolism , Methionine/deficiency , Non-alcoholic Fatty Liver Disease , Transcriptome , Animals , Choline , Choline Deficiency/chemically induced , Choline Deficiency/genetics , Choline Deficiency/metabolism , Disease Models, Animal , Humans , Mice , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...