Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-16, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319376

ABSTRACT

Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is the only human paracaspase, that serves as an adaptor protein and controls substantial genes expressed in the activation, proliferation of lymphocyte, and immune reactions by triggering the IKK/NF-kB signaling pathway. However, unusual MALT1-mediated NF-kB signaling pathway has been identified in multiple diseases like cancer, therefore making MALT1 a promising therapeutic target. There are scanty numbers of MALT1 inhibitors, thus the need to discover more compounds with less or no toxicity issue, that are cheap and pharmacologically efficient is of pertinence. Hence, our present study was to identify phyto-small molecules that could bind the allosteric interface of MALT1 using in silico methods. Total of 34 plant molecules were selected and screened for druglikeness, after which they were docked via Maestro 11.1 against the allosteric site of MALT1. The molecule with a binding score (kcal/mol) better than the control drug was subjected to molecular dynamics (MD) simulations of 100 ns via Desmond, free energy perturbations, principal component and Pearson correlation analyses. Our findings from this computational study presents cyanidin (-8.822 kcal/mol) as better binder to the allosteric site of MALT1 based on the molecular docking and pharmacokinetic profiling than thioridazine. Similarly, cyanidin-MALT1 complex showed significant stability and exhibiting contacts with critical amino acid residues in the site of interest than thioridazine-MALT1 complex. Hence, cyanidin is a potential allosteric inhibitor of MALT1. However, an urgent need for in vitro and in vivo validations is required to ascertain the efficacy of cyanidin in the fight against cancer and other MALT1-related diseases.

2.
J Biomol Struct Dyn ; : 1-21, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517058

ABSTRACT

Chronic myeloid leukemia (CML) is a hematological malignancy characterized by the neoplastic transformation of hematopoietic stem cells, driven by the Philadelphia (Ph) chromosome resulting from a translocation between chromosomes 9 and 22. This Ph chromosome harbors the breakpoint cluster region (BCR) and the Abelson (ABL) oncogene (BCR-ABL1) which have a constitutive tyrosine kinase activity. However, the tyrosine kinase activity of BCR-ABL1 have been identified as a key player in CML initiation and maintenance through c-Abl kinase. Despite advancements in tyrosine kinase inhibitors, challenges such as efficacy, safety concerns, and recurring drug resistance persist. This study aims to discover potential c-Abl kinase inhibitors from plant compounds with anti-leukemic properties, employing drug-likeness assessment, molecular docking, in silico pharmacokinetics (ADMET) screening, density function theory (DFT), and molecular dynamics simulations (MDS). Out of 58 screened compounds for drug-likeness, 44 were docked against c-Abl kinase. The top hit compound (isovitexin) and nilotinib (control drug) were subjected to rigorous analyses, including ADMET profiling, DFT evaluation, and MDS for 100 ns. Isovitexin demonstrated a notable binding affinity (-15.492 kcal/mol), closely comparable to nilotinib (-16.826 kcal/mol), showcasing a similar binding pose and superior structural stability and reactivity. While these findings suggest isovitexin as a potential c-Abl kinase inhibitor, further validation through urgent in vitro and in vivo experiments is imperative. This research holds promise for providing an alternative avenue to address existing CML treatment and management challenges.Communicated by Ramaswamy H. Sarma.

3.
J Biomol Struct Dyn ; 42(3): 1307-1318, 2024.
Article in English | MEDLINE | ID: mdl-37139557

ABSTRACT

Ubiquitin specific protease 30 (USP30) has been attributed to mitochondrial dysfunction and impediment of mitophagy in Parkinson's disease (PD). This happens once ubiquitin that supposed to bind with deformed mitochondria at the insistence of Parkin, it's been recruited by USP30 via the distal ubiquitin binding domain. This is a challenge when PINK1 and Parkin loss their functions due to mutation. Although, there are reports on USP30s' inhibitors but no study on the repurposing of inhibitors approved against MMP-9 and SGLT-2 as potential inhibitors of USP30 in PD. Thus, the highlight therein, is to repurpose approved inhibitors of MMP-9 and SGLT-2 against USP30 in PD using extensive computational modelling framework. 3D structures of Ligands and USP30 were obtained from PubChem and protein database (PDB) servers respectively, and were subjected to molecular docking, ADMET evaluation, DFT calculation, molecular dynamics simulation (MDS) and free energy calculations. Out of the 18 drugs, 2 drugs showed good binding affinity to the distal ubiquitin binding domain, moderate pharmacokinetic properties and good stability. The findings showed canagliflozin and empagliflozin as potential inhibitors of USP30. Thus, we present these drugs as repurposing candidates for the treatment of PD. However, the findings in this current study needs to be validated experimentally.Communicated by Ramaswamy H. Sarma.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/genetics , Matrix Metalloproteinase 9 , Molecular Docking Simulation , Drug Repositioning , Protein Kinases/metabolism , Mitochondrial Proteins/chemistry , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/genetics , Thiolester Hydrolases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Ubiquitin-Specific Proteases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL