Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Genom ; 8(3)2022 03.
Article in English | MEDLINE | ID: mdl-35229712

ABSTRACT

Fish mortality caused by Streptococcus iniae is a major economic problem in aquaculture in warm and temperate regions globally. There is also risk of zoonotic infection by S. iniae through handling of contaminated fish. In this study, we present the complete genome sequence of S. iniae strain QMA0248, isolated from farmed barramundi in South Australia. The 2.12 Mb genome of S. iniae QMA0248 carries a 32 kb prophage, a 12 kb genomic island and 92 discrete insertion sequence (IS) elements. These include nine novel IS types that belong mostly to the IS3 family. Comparative and phylogenetic analysis between S. iniae QMA0248 and publicly available complete S. iniae genomes revealed discrepancies that are probably due to misassembly in the genomes of isolates ISET0901 and ISNO. Long-range PCR confirmed five rRNA loci in the PacBio assembly of QMA0248, and, unlike S. iniae 89353, no tandemly repeated rRNA loci in the consensus genome. However, we found sequence read evidence that the tandem rRNA repeat existed within a subpopulation of the original QMA0248 culture. Subsequent nanopore sequencing revealed that the tandem rRNA repeat was the most prevalent genotype, suggesting that there is selective pressure to maintain fewer rRNA copies under uncertain laboratory conditions. Our study not only highlights assembly problems in existing genomes, but provides a high-quality reference genome for S. iniae QMA0248, including manually curated mobile genetic elements, that will assist future S. iniae comparative genomic and evolutionary studies.


Subject(s)
Streptococcus iniae , Streptococcus , Animals , DNA Transposable Elements , Phylogeny , Sequence Analysis, DNA , Streptococcus/genetics , Streptococcus iniae/genetics
3.
mBio ; 7(2): e00347-16, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27118589

ABSTRACT

UNLABELLED: Escherichia coli ST131 is the most frequently isolated fluoroquinolone-resistant (FQR) E. coli clone worldwide and a major cause of urinary tract and bloodstream infections. Although originally identified through its association with the CTX-M-15 extended-spectrum ß-lactamase resistance gene, global genomic epidemiology studies have failed to resolve the geographical and temporal origin of the ST131 ancestor. Here, we developed a framework for the reanalysis of publically available genomes from different countries and used this data set to reconstruct the evolutionary steps that led to the emergence of FQR ST131. Using Bayesian estimation, we show that point mutations in chromosomal genes that confer FQR coincide with the first clinical use of fluoroquinolone in 1986 and illustrate the impact of this pivotal event on the rapid population expansion of ST131 worldwide from an apparent origin in North America. Furthermore, we identify virulence factor acquisition events that predate the development of FQR, suggesting that the gain of virulence-associated genes followed by the tandem development of antibiotic resistance primed the successful global dissemination of ST131. IMPORTANCE: Escherichia coli sequence type 131 (ST131) is a recently emerged and globally disseminated multidrug-resistant clone frequently associated with human urinary tract and bloodstream infections. In this study, we have used two large publically available genomic data sets to define a number of critical steps in the evolution of this important pathogen. We show that resistance to fluoroquinolones, a class of broad-spectrum antibiotic used extensively in human medicine and veterinary practice, developed in ST131 soon after the introduction of these antibiotics in the United States, most likely in North America. We also mapped the acquisition of several fitness and virulence determinants by ST131 and demonstrate these events occurred prior to the development of fluoroquinolone resistance. Thus, ST131 has emerged by stealth, first acquiring genes associated with an increased capacity to cause human infection, and then gaining a resistance armory that has driven its massive population expansion across the globe.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections/microbiology , Escherichia coli/drug effects , Escherichia coli/genetics , Evolution, Molecular , Fluoroquinolones/pharmacology , Escherichia coli/metabolism , Escherichia coli/pathogenicity , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Mutation , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...