Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
3 Biotech ; 13(12): 412, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37997597

ABSTRACT

The present research aimed to understand the influence of plant growth-promoting bacteria (PGPB) on various biochemical, nutritional, and pharmaceutical characteristics of Marrubium vulgare plants grown under elevated carbon dioxide (eCO2). To achieve this objective, a pot experiment was carried out, consisting of two treatments, namely: (i) biofertilization (Bf) by a PGPB strain (Micromonospora sp.) and (ii) two different air CO2 levels, including ambient CO2 (aCO2) and eCO2 concentrations (410 and 710 µmol CO2 mol-1, respectively). The improvement in the photosynthesis rate of eCO2 and Bf-treated plants can explain the increase in the production of carbohydrate. This is evidenced by a substantial rise, reaching up to + 75% and 25% in the total sugar and starch content in plants subjected to eCO2 treatment, respectively. Additionally, eCO2-treated plants exhibited a remarkable 102% increase in soluble sugar synthesis, while plants subjected to Bf treatment showed a notable increase of 66%. Such modifications could be the main factor affecting plants carbon and nitrogen metabolism. Although the level of certain amino acids (such as glycine, tyrosine, and phenylalanine) in plants exhibited significant increases in response to eCO2 and Bf, the levels of other amino acids demonstrated enhancements in plants grown under eCO2 (e.g., histidine) or under treatments containing Bf (e.g., alanine and ornithine). Improvements in primary metabolites led to more benefits in plants treated with Bf and CO2 by boosting secondary metabolites accumulation, including phenolics (+ 27-100%), flavonoids (+ 30-92%), and essential oils (up to + 296%), as well as improved antioxidant capacity (FRAP). This remarkable effectiveness was evident in the significant increase in the biomass production, highlighting the synergistic impact of the treatments. Therefore, the interaction of Bf and eCO2 not only induced plant biomass accumulation but also improved the nutritional and pharmaceutical value of M. vulgare plants.

2.
Physiol Plant ; 175(5): e14036, 2023.
Article in English | MEDLINE | ID: mdl-37882304

ABSTRACT

Elevated CO2 (eCO2 ) is one of the climate changes that may benefit plant growth under emerging soil contaminants such as heavy metals. In this regard, the morpho-physiological mechanisms underlying the mitigating impact of eCO2 on beryllium (Be) phytotoxicity are poorly known. Hence, we investigated eCO2 and Be interactive effects on the growth and metabolism of two species from different groups: cereal (oat) and legume (alfalfa). Be stress significantly reduced the growth and photosynthetic attributes in both species, but alfalfa was more susceptible to Be toxicity. Be stress induced reactive oxygen species (ROS) accumulation by increasing photorespiration, subsequently resulting in increased lipid and protein oxidation. However, the growth inhibition and oxidative stress induced by Be stress were mitigated by eCO2 . This could be explained, at least partially, by the increase in organic acids (e.g., citric acid) released into the soil, which subsequently reduced Be uptake. Additionally, eCO2 reduced cellular oxidative damage by reducing photorespiration, which was more significant in alfalfa plants. Furthermore, eCO2 improved the redox status and detoxification processes, including phytochelatins, total glutathione and metallothioneins levels, and glutathione-S-transferase activity in both species, but to a greater extend in alfalfa. In this context, eCO2 also stimulated anthocyanin biosynthesis by accumulating its precursors (phenylalanine, coumaric acid, cinnamic acid, and naringenin) and key biosynthetic enzymes (phenylalanine ammonia-lyase, cinnamate hydroxylase, and coumarate:CoA ligase) mainly in alfalfa plants. Overall, this study explored the mechanistic approach by which eCO2 alleviates the harmful effects of Be. Alfalfa was more sensitive to Be stress than oats; however, the alleviating impact of eCO2 on Be stress was more pronounced in alfalfa.


Subject(s)
Carbon Dioxide , Medicago sativa , Carbon Dioxide/pharmacology , Carbon Dioxide/metabolism , Medicago sativa/metabolism , Avena/metabolism , Beryllium , Oxidative Stress , Plants/metabolism , Glutathione/metabolism , Soil
3.
Front Plant Sci ; 14: 1244019, 2023.
Article in English | MEDLINE | ID: mdl-37780499

ABSTRACT

Introduction: Antimony (Sb), a common rare heavy metal, is naturally present in soils at low concentrations. However, it is increasingly used in industrial applications, which in turn, leads to an increased release into the environment, exerting a detrimental impact on plant growth. Thus, it is important to study Sb effects on plants under the current and future CO2 (eCO2). Methods: To this end, high Sb concentrations (1500 mg/kg soil) effects under ambient (420 ppm) and eCO2 (710 ppm) on wheat growth, physiology (photosynthesis reactions) and biochemistry (minerals contents, redox state), were studied and soil microbial were evaluated. Results and discussion: Our results showed that Sb uptake significantly decreased wheat growth by 42%. This reduction could be explained by the inhibition in photosynthesis rate, Rubisco activity, and photosynthetic pigments (Cha and Chb), by 35%, 44%, and 51%, respectively. Sb significantly reduced total bacterial and fungal count and increased phenolic and organic acids levels in the soil to decrease Sb uptake. Moreover, it induced oxidative markers, as indicated by the increased levels of H2O2 and MDA (1.96 and 2.8-fold compared to the control condition, respectively). To reduce this damage, antioxidant capacity (TAC), CAT, POX, and SOD enzymes activity were increased by 1.61, 2.2, 2.87, and 1.86-fold, respectively. In contrast, eCO2 mitigated growth inhibition in Sb-treated wheat. eCO2 and Sb coapplication mitigated the Sb harmful effect on growth by reducing Sb uptake and improving photosynthesis and Rubisco enzyme activity by 0.58, 1.57, and 1.4-fold compared to the corresponding Sb treatments, respectively. To reduce Sb uptake and improve mineral availability for plants, a high accumulation of phenolics level and organic acids in the soil was observed. eCO2 reduces Sb-induced oxidative damage by improving redox status. In conclusion, our study has provided valuable insights into the physiological and biochemical bases underlie the Sb-stress mitigating of eCO2 conditions. Furthermore, this is important step to define strategies to prevent its adverse effects of Sb on plants in the future.

4.
Plant Physiol Biochem ; 203: 108077, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37827045

ABSTRACT

Thallium (TI) is a toxic metal that can trigger harmful impacts on growth and metabolism of plants. Utilizing arbuscular mycorrhizal fungi (AMF) proves to be an effective strategy for alleviating heavy metal toxicity in plants. To this end, AMF were applied to mitigate TI toxic effects on the growth, primary and secondary metabolism of soybean plants. Here, TI stress inhibited the growth and photosynthetic parameters of soybean plants. It also increased the oxidative damage as demonstrated by increased levels of oxidative markers, (MDA and lipoxygenase (LOX) activity). However, AMF could mitigate the reduction in growth and photosynthesis induced by TI, as well as the induction of oxidative damage. To overcome TI toxicity, AMF increased the levels and metabolism of osmolytes such as proline in soybean plants. This was in line with the increased activities of key enzymes that involved in proline biosynthesis (e.g., P5CS (pyrroline-5-carboxylate synthetase), P5CR (pyrroline-5-carboxylate reductase) and OAT (ornithine aminotransferase) under the AMF and/or TI treatments. Furthermore, soybean plants could benefit from the synergism between AMF and TI to enhance the contents of individual (e.g., spermine and spermidine) and total polyamines as well as their metabolic enzymes (e.g., arginine decarboxylase and ornithine decarboxylase). Overall, the combined application of AMF emerges as a viable approach for alleviating TI toxicity in soybean plants.


Subject(s)
Mycorrhizae , Mycorrhizae/metabolism , Glycine max/metabolism , Thallium , Photosynthesis , Plants/metabolism , Proline/metabolism
5.
ACS Omega ; 8(39): 35975-35987, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810652

ABSTRACT

Potassium nitrate (KNO3) and ascorbic acid (AsA) priming can effectively boost biomass accumulation and nutritional value of plants; nevertheless, few studies investigated their effects on seed sprouting. Thus, we aimed to explore the effects of KNO3 and AsA priming on linseed (Linum usitatissimum L.) sprout growth and assess the changes in bioactive compound levels, which provide valuable insights into the potential benefits of these priming treatments on sprout quality and nutritional value. To this end, germination, biomass accumulation, photosynthetic pigments, primary and secondary metabolites, and mineral profiles in the primed sprouts were evaluated. Moreover, to assess the impact on biological value, we determined the antioxidant and antimicrobial activities of the treated sprout extract. A marked enhancement was observed in germination and pigment levels of KNO3- and AsA-primed sprouts. These increases were in line with induced primary metabolites (e.g., carbohydrate and amino acid contents), particularly under KNO3 treatment. There was also an increase in amino acid metabolism (e.g., increased GS, GDH, and GOGAT enzyme activities), nitrogen level, and nitrate reductase (NR) activity. The linseed sprouts primed with AsA exhibited strong antioxidant and antibacterial activities. Consistently, high levels of polyphenols, flavonoids, total AsA, and tocopherols, as well as improved activity of antioxidant enzymes [peroxidase (POX), catalase (CAT), and superoxide dismutase (SOD)], were recorded. This study proposes KNO3 and AsA priming as an innovative approach to improving the nutritional and health-promoting properties of linseed sprouts. This knowledge will contribute to a better understanding of the biochemical processes involved in improving the nutritional quality and functional benefits of linseed sprouts.

6.
Plants (Basel) ; 12(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37653841

ABSTRACT

Heavy metal pollution is one of the major agronomic challenges. Tungsten (W) exposure leads to its accumulation in plants, which in turn reduces plant growth, inhibits photosynthesis and induces oxidative damage. In addition, the predicted increase in CO2 could boost plant growth under both optimal and heavy metal stress conditions. The aim of the present study was to investigate the effect of W on growth, photosynthetic parameters, oxidative stress and redox status in rye plants under ambient and elevated (eCO2) levels. To this end, rye plants were grown under the following conditions: ambient CO2 (aCO2, 420 ppm), elevated CO2 (eCO2, 720 ppm), W stress (350 mg kg-1 soil) and W+eCO2. W stress induced significant (p < 0.05) decreases in growth and photosynthesis, increases in oxidative damages (lipid peroxidation) and the antioxidant defense system, i.e., ascorbate (ASC), reduced glutathione (GSH), GSH reductase (GR), peroxidase (POX), catalase (CAT), superoxide dismutase (SOD), ASC peroxide (APX) and dehydroascorbate reductase (DHAR). On the other hand, eCO2 decreased W uptake and improved photosynthesis, which sequentially improved plant growth. The obtained results showed that eCO2 can decrease the phytotoxicity risks of W in rye plants. This positive impact of eCO2 on reducing the negative effects of soil W was related to their ability to enhance plant photosynthesis, which in turn provided energy and a carbon source for scavenging the reactive oxygen species (ROS) accumulation caused by soil W stress.

7.
Food Res Int ; 172: 113122, 2023 10.
Article in English | MEDLINE | ID: mdl-37689887

ABSTRACT

Guar (Cyamopsis tetragonoloba L.) is a summer legume that is becoming a crucial industrial crop because of its high gum and protein content. Thus far, the combined effects of arbuscular mycorrhizal fungi (AMF) and Bradyrhizobium on the yield and chemical composition of guar plants are not well studied. Therefore, the current investigation was designed to estimate the individual as well as the combined effects of AMF and Bradyrhizobium on plant growth, yield and nutritional quality of seeds and leaves of guar. AMF and/or Bradyrhizobium inoculation improved chemical composition of guar seeds and its morpho-physiological (plant height, fresh weight, dry weight, and yield production) traits. In addition to increased guar growth and yield production, the inoculation of AMF and/or Bradyrhizobium increased guar leaf and seed minerals, fiber, lipids, crude protein and ash contents. At primary metabolites, there were increases in sugar levels including raffinose stachyose, verbascose and galactomannan. These increases in sugar provided a route for organic acids, amino acids and fatty acids production. Interestingly, there was an increase in essential amino acids and unsaturated fatty acids. At the bioactive secondary metabolite levels, biofertilizers improved phenols and flavonoids levels and anthocyanin and polyamines biosynthesis. In line with these increases, precursors of anthocyanin (phenylalanine, p-coumaric acid, and cinnamic acid) and the levels of polyamines (diaminopropane, putrescine, cadaverine, spermidine, spermine, and agmatine) were increased. Overall, for the first time, our study shed the light on how AMF and Bradyrhizobium improved guar yield and metabolism. Our findings suggested that the combined inoculation of AMF and Bradyrhizobium is an innovative approach to improve guar growth, yield production and yield quality.


Subject(s)
Cyamopsis , Mycorrhizae , Fertilizers , Anthocyanins , Seeds , Plant Leaves , Polyamines , Sugars
8.
ACS Omega ; 8(29): 26414-26424, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37521602

ABSTRACT

Due to the growing world population and increasing environmental stress, improving the production, nutritional quality, and pharmaceutical applications of plants have become an urgent need. Therefore, current research was designed to investigate the impact of seed priming using plant-growth-promoting bacteria (PGPB) along with selenium nanoparticles (SeNPs) treatment on chemical and biological properties of three Brassica oleracea cultivars [Southern star (VA1), Prominence (VA2), Monotop (VA3)]. With this aim, one out of five morphologically different strains of bacteria, namely, JM18, which was further identified via 16S rRNA gene sequencing as a Nocardiopsis species with strong plant-growth-promoting traits, isolated from soil, was used. To explore the growth-promoting potential of Nocardiopsis species, seeds of three varieties of B. oleracea were primed with JM18 individually or in combination with SeNP treatment. Seed treatments increased sprout growth (fresh and dry weights) and glucosinolate accumulation. The activity of myrosinase was significantly increased through brassica sprouts and consequently enhanced the amino-acid-derived glucosinolate induction. Notably, a reduction in effective sulforaphane nitrile was detected, being positively correlated with a decrease in epithiospecifier protein (EP). Consequently, the antioxidant activities of VA2 and VA3, determined by the ferric reducing antioxidant power (FRAP) assay, were increased by 74 and 79%, respectively. Additionally, the antibacterial activities of JM18-treated cultivars were improved. However, a decrease was observed in SeNP- and JM18 + SeNP-treated VA2 and VA3 against Serratia marcescens and Candida glabrata and VA1 against S. marcescens. In conclusion, seed priming with the JM18 extract is a promising method to enhance the health-promoting activities of B. oleracea sprouts.

9.
Front Plant Sci ; 14: 1183185, 2023.
Article in English | MEDLINE | ID: mdl-37521939

ABSTRACT

Elevating CO2 (eCO2) levels will change behavior and the effect of soil fertilizers and nutrients. Selenium NPs (SeNPs) have arisen as an alternative to conventional Se fertilizers to enrich crops. However, it remains unclear whether eCO2 will change the biological effects of soil SeNPs on plant growth and metabolism. The current study aimed to shed new light on the interactive impacts of eCO2 and SeNPs on wheat plants. Accordingly, the attempts were to reveal whether the application of SeNPs can modulate the eCO2 effects on wheat (Triticum aestivum L.) physiological and biochemical traits. With this goal, a pot experiment was carried out where the seeds were primed with SeNPs and plants were grown under two levels of CO2 concentrations (ambient CO2 (aCO2, 410 µmol CO2 mol-1; and eCO2 (710 µmol CO2 mol-1)) during six weeks after sowing. Although SeNPs+eCO2 treatment resulted in the highest accumulation of photosynthetic pigment content in leaves (+49-118% higher than control), strong evidence of the positive impacts on Rubisco activity (~+23%), and stomatal conductance (~+37%) was observed only under eCO2, which resulted in an improvement in photosynthesis capacity (+42%). When photosynthesis parameters were stimulated with eCO2, a significant improvement in dry matter production was detected, in particular under SeNPs+eCO2 which was 1.8 times higher than control under aCO2. The highest content of antioxidant enzymes, molecules, and metabolites was also recorded in SeNPs+eCO2, which might be associated with the nearly 50% increase in sodium content in shoots at the same treatment. Taken together, this is the first research documenting the effective synergistic impacts of eCO2 and SeNPs on the mentioned metabolites, antioxidants, and some photosynthetic parameters, an advantageous consequence that was not recorded in the individual application of these treatments, at least not as broadly as with the combined treatment.

10.
3 Biotech ; 13(5): 145, 2023 May.
Article in English | MEDLINE | ID: mdl-37124983

ABSTRACT

Plant growth, promoting, bacteria, (PGPB) can improve plant germination and growth in heavy metal-contaminated land and enhance heavy metal removal efficiency. In this study, we isolated PGPR bacterial strains which can withstand heavy metal pollution and tested their ability to improve barley germination under heavy metal stress. Out of 16 multi-resistant heavy metal isolates, strain MD36 was identified by 16S rRNA sequencing and shared close relation to different species of the genus Glutamicibacter. The new isolated strain showed other important PGPR activities, mainly IAA production and salt tolerance. The effect of adding the strain MD36 to barley grains under heavy metal stress enhanced their germination up to 100%, while the percentage of germination ranged between 0 and 20% for non-inoculated grains. In addition, in these conditions, MD36 can significantly enhance barley growth by reducing the heavy metal effect. This study strongly recommends the use of MD36 as seed coatings trials in the field to enhance growth and yield in soils contaminated with heavy metals, as well as in bioremediation of HM-contaminated salt-containing soils and water.

11.
Front Plant Sci ; 14: 1108977, 2023.
Article in English | MEDLINE | ID: mdl-37063192

ABSTRACT

Water scarcity is a crucial environmental stress that constrains rice growth and production. Thus, breeding for developing high-yielding and drought-tolerant rice genotypes is decisive in sustaining rice production and ensuring global food security, particularly under stress conditions. To this end, this study was conducted to evaluate the effects of water deficit on 31 genotypes of rice (seven lines, viz., Puebla, Hispagran, IET1444, WAB1573, Giza177, Sakha101, and Sakha105, and three testers, viz., Sakha106, Sakha107, and Sakha108) and their 21 crosses produced by line × tester mating design under normal and water deficit conditions; this was to estimate the combining ability, heterosis, and gene action for some traits of physiological, biochemical, and yield components. This study was performed during the summer seasons of 2017 and 2018. The results showed that water deficit significantly decreased relative water content, total chlorophyll content, grain yield, and several yield attributes. However, osmolyte (proline) content and antioxidant enzyme activities (CAT and APX) were significantly increased compared with the control condition. Significant mean squares were recorded for the genotypes and their partitions under control and stress conditions, except for total chlorophyll under normal irrigation. Significant differences were also detected among the lines, testers, and line × tester for all the studied traits under both irrigation conditions. The value of the σ²GCA variance was less than the value of the σ²SCA variance for all the studied traits. In addition, the dominance genetic variance (σ2D) was greater than the additive genetic variance (σ2A) in controlling the inheritance of all the studied traits under both irrigation conditions; this reveals that the non-additive gene effects played a significant role in the genetic expression of the studied traits. The two parental genotypes (Puebla and Hispagran) were identified as good combiners for most physiological and biochemical traits, earliness, shortness, grain yield, and 1,000-grains weight traits. Additionally, the cross combinations Puebla × Sakha107, Hispagran × Sakha108, and Giza177 × Sakha107 were the most promising. These results demonstrated the substantial and desirable specific combining ability effects on all the studied traits, which suggested that it could be considered for use in rice hybrid breeding programs.

12.
Plants (Basel) ; 12(7)2023 Apr 02.
Article in English | MEDLINE | ID: mdl-37050160

ABSTRACT

Increases in atmospheric CO2 is known to promote plant growth under heavy metals stress conditions. However, vanadium (V) stress mitigating the impact of eCO2 as well as the physiological and biochemical bases of this stress mitigation have not been well studied. To this end, this study investigated the growth, photosynthetic parameters, oxidative damages antioxidants, and antioxidants enzymes in wheat plants grown under ambient (420 PPM) and high eCO2 (720 ppm) levels. Exposing wheat plants to higher V increased its accumulation in plants which consequentially inhibited plant growth and induced oxidative damage. An increase in antioxidant and detoxification defense systems was observed but it was not enough to reduce V stress toxicity. On the other hand, wheat growth was improved as a result of reduced V uptake and toxicity on photosynthesis under eCO2. To reduce V uptake, wheat accumulated citric acid, and oxalic acid in soil preferentially under both treatments but to more extend under V and eCO2. Additionally, improved photosynthesis induced high carbon availability that was directed to produce chelating proteins (metallothioneins, phytochelatin) and antioxidants (phenolics, flavonoids, total antioxidant capacity). This study advances our knowledge of the processes behind the variations in the physiological and biochemical responses of the wheat crop under V and eCO2 conditions.

13.
Plants (Basel) ; 12(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36771762

ABSTRACT

Through metabolic analysis, the present research seeks to reveal the defense mechanisms activated by a heavy metals-resistant plant, Sesuvium portulacastrum L. In this regard, shifting metabolisms in this plant were investigated in different heavy metals-contaminated experimental sites, which were 50, 100, 500, 1000, and 5000 m away from a man-fabricated sewage dumping lake, with a wide range of pollutant concentrations. Heavy metals contaminations in contaminated soil and their impact on mineral composition and microbial population were also investigated. The significant findings to emerge from this research were the modifications of nitrogen and carbon metabolisms in plant tissues to cope with heavy metal toxicity. Increased plant amylase enzymes activity in contaminated soils increased starch degradation to soluble sugars as a mechanism to mitigate stress impact. Furthermore, increased activity of sucrose phosphate synthase in contaminated plants led to more accumulation of sucrose. Moreover, no change in the content of sucrose hydrolyzing enzymes (vacuolar invertase and cytosolic invertase) in the contaminated sites can suggest the translocation of sucrose from shoot to root under stress. Similarly, although this study demonstrated a high level of malate in plants exposed to stress, caution must be applied in suggesting a strong link between organic acids and the activation of defense mechanisms in plants, since other key organic acids were not affected by stress. Therefore, activation of other defense mechanisms, especially antioxidant defense molecules including alpha and beta tocopherols, showed a greater role in protecting plants from heavy metals stress. Moreover, the increment in the content of some amino acids (e.g., glycine, alanine, glutamate, arginine, and ornithine) in plants under metal toxicity can be attributed to a high level of stress tolerance. Moreover, strategies in the excitation of the synthesis of the unsaturated fatty acids (oleic and palmitoleic) were involved in enhancing stress tolerance, which was unexpectedly associated with an increase in the accumulation of palmitic and stearic (saturated fatty acids). Taken together, it can be concluded that these multiple mechanisms were involved in the response to stress which may be cooperative and complementary with each other in inducing resistance to the plants.

14.
Microbiol Res ; 266: 127254, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36371871

ABSTRACT

The mechanisms underlie increased stress tolerance in plants of salinity stress in plants by arbuscular mycorrhizal fungi (AMF) are poorly understood, particularly the role of polyamine metabolism. The current study was conducted to investigate how inoculation with the AMF, Funneliformis constrictum, affects maize plant tolerance to salt stress. To this end, we investigated the changes in photosynthesis, redox status, primary metabolites (amino acids) and secondary metabolism (phenolic and polyamine metabolism). Control and inoculated maize plants were grown using different concentrations of diluted seawater (0%, 10%, 20% and 40%). Results revealed that treatment with 10% seawater had a beneficial effect on AMF and its host growth. However, irrigation with 20% and 40% significantly reduced plant growth and biomass. As seawater concentration increased, the plants' reliance on mycorrhizal fungi increased resulting in enhanced growth and photosynthetic pigments contents. Under higher seawater concentrations, inoculation with AMF reduced salinity induced oxidative stress and supported redox homeostasis by reducing H2O2 and MDA levels as well as increasing antioxidant-related enzymes activities (e.g., CAT, SOD, APX, GPX, POX, GR, and GSH). AMF inoculation increased amino acid contents in shoots and roots under control and stress conditions. Amino acids availability provides a route for polyamines biosynthesis, where AMF increased polyamines contents (Put, Spd, Spm, total Pas) and their metabolic enzymes associated (ADC, SAMDC, Spd synthase, and Spm synthase), particularly under 40% seawater irrigation. Consistently, the transcription of genes, involved in polyamine metabolism was also up regulated in salinity-stressed plants. AMF further increased the expression in genes involved in polyamine biosynthesis (ODC, SAMDC, SPDS2 and decreased expression of those in catabolic biosynthesis (ADC and PAO). Overall, inoculation with Funneliformis constrictum could be adopted as a practical strategy to alleviate salinity stress.


Subject(s)
Mycorrhizae , Zea mays , Zea mays/microbiology , Salinity , Hydrogen Peroxide/metabolism , Mycorrhizae/metabolism , Polyamines/metabolism , Amino Acids/metabolism
15.
Plant Physiol Biochem ; 194: 29-40, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36371897

ABSTRACT

Drought is an important threat worldwide, therefore, it is vital to create workable solutions to mitigate the negative effects of drought stress. To this end, we investigated the interactive effect of compost (Comp), arbuscular mycorrhizal fungi (AMF) and carbon nanoparticles (CNPs) on maize plant crops under drought stress. The combined treatments were more effective at increasing soil fertility and promoting the growth of maize plants under both control and drought stress conditions by 20.1% and 39.4%, respectively. The interactions between treatments, especially the effects of Comp-AMF-CNPs mixture, reduce the activity of photorespiration induced H2O2 production that consequently reduces drought-related oxidative damages (lipid peroxidation and protein oxidation). Plants treated with Comp-AMF or Comp-AMF-CNPs showed an increase in their antioxidant defense system. Comp-AMF-CNPs increased enzyme activities by 50.3%, 30.1%, and 71% for ascorbate peroxidase (APX), dehydro-ASC reductase (DHAR), and monodehydro-ASC reductase (MDHAR), respectively. Comp-AMF-CNPs also induced the highest increase in anthocyanins (69.5%) compared to the control treatment. This increase was explained by increased anthocyanin percussor, by 37% and 13% under control and drought, respectively. While the increases in biosynthetic key enzymes, phenylalanine aminolayse (PAL) and chalcone synthase (CHS) were 77% and 5% under control and 69% and 89% under drought, respectively. This work advanced our understanding on how Comp-AMF-CNPs improve growth, physiology, and biochemistry of maize plants under drought stress conditions. Overall, this study suggests the effectiveness of Comp-AMF-CNPs as a promising approach to enhance the growth of maize plants in dry areas.


Subject(s)
Composting , Mycorrhizae , Nanoparticles , Mycorrhizae/physiology , Zea mays/metabolism , Droughts , Hydrogen Peroxide/metabolism , Anthocyanins/metabolism , Oxidoreductases/metabolism , Carbon/metabolism
16.
Front Plant Sci ; 13: 1037474, 2022.
Article in English | MEDLINE | ID: mdl-36466263

ABSTRACT

To date, several studies have considered the phytotoxic impact of cosmetics and personal care products on crop plants. Nonetheless, data are scarce about the toxic impact of galaxolide [hexahydro-hexamethyl cyclopentabenzopyran (HHCB)] on the growth, physiology, and biochemistry of plants from different functional groups. To this end, the impact of HHCB on biomass, photosynthetic efficiency, antioxidant production, and detoxification metabolism of grass (wheat) and legume (faba bean) plants has been investigated. On the other hand, plant growth-promoting bacteria (PGPB) can be effectively applied to reduce HHCB phytotoxicity. HHCB significantly reduced the biomass accumulation and the photosynthetic machinery of both crops, but to more extent for wheat. This growth reduction was concomitant with induced oxidative damage and decreased antioxidant defense system. To mitigate HHCB toxicity, a bioactive strain of diazotrophic plant growth-promoting Rhodospirillum sp. JY3 was isolated from heavy metal-contaminated soil in Jazan, Kingdom of Saudi Arabia, and applied to both crops. Overall, Rhodospirillum mitigated HHCB-induced stress by differently modulating the oxidative burst [malondialdehyde (MDA), hydrogen peroxide (H2O2), and protein oxidation] in both wheat and faba beans. This alleviation was coincident with improvement in plant biomass and photosynthetic efficiency, particularly in wheat crops. Considering the antioxidant defense system, JY3 augmented the antioxidants in both wheat and faba beans and the detoxification metabolism under HHCB stress conditions. More interestingly, inoculation with JY3 further enhanced the tolerance level of both wheat and faba beans against contamination with HHCB via quenching the lignin metabolism. Overall, this study advanced our understanding of the physiological and biochemical mechanisms underlying HHCB stress and mitigating its impact using Rhodospirillum sp. JY3, which may strikingly reduce the environmental risks on agriculture sustainability.

17.
Plants (Basel) ; 11(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36501367

ABSTRACT

Drought negatively affects crop growth and development, so it is crucial to develop practical ways to reduce these consequences of water scarcity. The effect of the interactive potential of compost (Comp), mycorrhizal fungi (AMF), and carbon nanoparticles (CNPS) on plant growth, photosynthesis rate, primary metabolism, and secondary metabolism was studied as a novel approach to mitigating drought stress in maize plants. Drought stress significantly reduced maize growth and photosynthesis and altered metabolism. Here, the combined treatments Com-AMF or Com-AMF-CNPs mitigated drought-induced reductions in fresh and dry weights. The treatments with AMF or CNPS significantly increased photosynthesis (by 10%) in comparison to the control plants. Results show that soluble sugars were accumulated to maintain the osmotic status of the maize plant under drought stress. The level and metabolism of sucrose, an osmo-protectant, were increased in plants treated with Com (by 30%), which was further increased under the triple effect of Com-AMF-CNPs (40%), compared to untreated plants. This was inconsistent with increased sucrose-phosphate synthase and sucrose-P-synthase activity. The combined treatment Com-AMF-CNPs increased the levels of oxalic and succinic acids (by 100%) and has been reflected in the enhanced levels of amino acids such as the antioxidant and omso-protectant proline. Higher increases in fatty acids by treatment with CNPS were also recorded. Com-AMF-CNPs enhanced many of the detected fatty acids such as myristic, palmitic, arachidic, docosanoic, and pentacosanoic (110%, 30%, 100%, and 130%, respectively), compared to untreated plants. At the secondary metabolism level, sugar and amino acids provide a route for polyamine biosynthesis, where Com-AMF-CNPs increased spermine and spermidine synthases, ornithine decarboxylase, and adenosyl methionine decarboxylase in treated maize. Overall, our research revealed for the first time how Cmo, AMF, and/or CNPS alleviated drought stress in maize plants.

18.
Front Plant Sci ; 13: 997475, 2022.
Article in English | MEDLINE | ID: mdl-36325574

ABSTRACT

Soil pollution with cadmium (Cd) is a serious threat to plant growth and development. On the other hand, silicon (Si) can support plants to cope with Cd stress. However, the Cd stress mitigating impact of Si reduction in pea (Pisum sativum L.) is not known. The objective of this study is to see if and how Si can reduce Cd toxicity. To the end, a greenhouse pot experiment was performed twice during the 2018/2019 and 2019/2020 seasons to investigate the effect of Si on the growth, anatomy, and biochemistry of Cd stressed peas plants. Cd exposure increased the contents of Cd ions in the root and shoot of pea plants. Consequentially, Cd accumulation in pea tissue significantly reduced plant growth i.e., plant height, leaf area, and shoot and root dry weights. The effect of Cd was concentration-dependent, where at low concentration (50 mg/kg soil), the plant height was 94.33 and 97.33cm and at high concentration (100 mg/kg soil), it was 89.0 and 91.0 cm in the two seasons, respectively. This growth reduction can be explained by the decrease in plants' photosynthesis, whereas plants exposed to Cd toxicity had lower chlorophyll levels. At the anatomy level, high Cd concentrations resulted in anatomical abnormalities such as an unusual vascular system, abnormal lignification in the pith parenchyma, and enlarged cortical cells. Moreover, all Cd concentrations resulted in a highly significant decrease in stomatal area and stomatal density (the number of stomata per mm2). In addition to growth inhibition, Cd-induced oxidative damage to pea plants as indicated by increased hydrogen peroxide (H2O2) and Malondialdehyde (MDA) levels. To reduce stress toxicity, plants treated with Cd at 50 and 100 (mg/kg) showed a significant increase in antioxidant capacity. Peroxidase (POD) enzyme activity was significantly increased by 41.26%, 28.64%, 77.05%, and 60.77% in both seasons, respectively. Si at 300 ppm under Cd (100 mg/kg) stress conductions considerably reduced (MDA) contents by 29.02% and 29.12%, in the two seasons, respectively. The findings pointed out that Si's ability to protect pea against the oxidative stress caused by Cd toxicity.

19.
Mar Pollut Bull ; 185(Pt A): 114296, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36343546

ABSTRACT

The genus Gracilaria is an economically important group of seaweeds as several species are utilized for various products such as agar, used in medicines, human diets, and poultry feed. Hence, it is imperative to understand their response to predicted ocean acidification conditions. In the present work, we have evaluated the response of Gracilaria foliifera and Gracilaria debilis to carbon dioxide (pCO2) induced seawater acidification (pH 7.7) for two weeks in a controlled laboratory conditions. As a response variable, we have measured growth, productivity, redox state, primary and secondary metabolites, and mineral compositions. We found a general increase in the daily growth rate, primary productivity, and tissue chemical composition (such as pigments, soluble and insoluble sugars, amino acids, and fatty acids), but a decrease in the mineral contents under the acidified condition. Under acidification, there was a decrease in malondialdehyde. However, there were no significant changes in the total antioxidant capacity and a majority of enzymatic and non-enzymatic antioxidants, except for an increase in tocopherols, ascorbate and glutathione-s-transferase in G. foliifera. These results indicate that elevated pCO2 will benefit the growth of the studied species. No sign of oxidative stress markers indicating the acclimatory response of these seaweeds towards lowered pH conditions. Besides, we also found increased antimicrobial activities of acidified samples against several of the tested food pathogens. Based on these observations, we suggest that Gracilaria spp. will be benefitted from the predicted future acidified ocean.


Subject(s)
Gracilaria , Seaweed , Humans , Gracilaria/chemistry , Seawater , Hydrogen-Ion Concentration , Seaweed/chemistry , Oxidation-Reduction , Carbon Dioxide/metabolism , Antioxidants/metabolism
20.
Physiol Plant ; 174(6): e13800, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36250979

ABSTRACT

We investigated the effect of plant growth-promoting bacterial strains (PGPB) as biofertilisers on the grain metabolic composition of durum wheat (Triticum durum Desf.). To this aim, we conducted a greenhouse experiment where we grew durum wheat plants supplied with a biofertiliser consortium of four PGPB and/or chemical fertiliser (containing nitrogen, phosphorus, potassium, and zinc), under non-stress, drought (at 40% field capacity), or salinity (150 mM NaCl) conditions. Nutrient accumulations in the grain were increased in plants treated with the biofertiliser consortium, alone or with a half dose of chemical fertilisers, compared to those in no fertilisation treatment. A clear benefit of biofertiliser application in the improvement of protein, soluble sugar, starch, and lipid contents in the grains was observed in comparison with untreated controls, especially under stress conditions. The most striking observation was the absence of significant differences between biofertiliser and chemical fertiliser treatments for most parameters. Moreover, the overall response to the biofertiliser consortium was accompanied by greater changes in amino acids, organic acids, and fatty acid profiles. In conclusion, PGPB improved the metabolic and nutrient status of durum wheat grains to a similar extent as chemical fertilisers, particularly under stress conditions, demonstrating the value of PGPB as a sustainable fertilisation treatment.


Subject(s)
Nutritional Status , Triticum , Triticum/metabolism , Fertilizers/analysis , Droughts , Salinity , Edible Grain/metabolism , Salt Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...