Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Neurosciences (Riyadh) ; 29(2): 103-112, 2024 May.
Article in English | MEDLINE | ID: mdl-38740397

ABSTRACT

OBJECTIVES: To investigate the fundamental mechanisms of the neuroprotective impact of Astaxanthin (AST) in a mouse model of Alzheimer's disease (AD) induced by scopolamine. METHODS: This research constituted an in vivo animal study encompassing 36 adult male mice, divided into 6 groups: Control, 100 mg/kg AST, 2 mg/kg scopolamine (AD group), 100 mg/kg AST+2 mg/kg scopolamine, 3 mg/kg galantamine+2 mg/kg scopolamine, and 100 mg/kg AST+3 mg/kg galantamine+2 mg/kg scopolamine. After 14 days, the mice's short-term memory, hippocampus tissue, oxidative and inflammatory markers were evaluated. RESULTS: The AST demonstrated a beneficial influence on short-term memory and a reduction in acetylcholinesterase activity in the brain. It exhibited neuroprotective and anti-amyloidogenic properties, significantly decreased pro-inflammatory markers and oxidative stress, and reversed the decline of the Akt-1 and phosphorylated Akt pathway, a crucial regulator of abnormal tau. Furthermore, AST enhanced the effect of galantamine in reducing inflammation and oxidative stress. CONCLUSION: The findings indicate that AST may offer therapeutic benefits against cognitive dysfunction in AD. This is attributed to its ability to reduce oxidative stress, control neuroinflammation, and enhance Akt-1 and pAkt levels, thereby underscoring its potential in AD treatment strategies.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Neuroprotective Agents , Oxidative Stress , Scopolamine , Xanthophylls , Animals , Xanthophylls/pharmacology , Xanthophylls/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/chemically induced , Male , Mice , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Acetylcholinesterase/metabolism , Galantamine/pharmacology , Galantamine/therapeutic use , Memory, Short-Term/drug effects
2.
J Bioenerg Biomembr ; 56(3): 247-259, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38483739

ABSTRACT

Cardiovascular diseases (CVDs) are the leading cause of death globally, attributed to a complex etiology involving metabolic, genetic, and protein-related factors. Lipoprotein(a) (Lp(a)), identified as a genetic risk factor, exhibits elevated levels linked to an increased risk of cardiovascular diseases. The lipoprotein(a) kringle domains have recently been identified as a potential target for the treatment of CVDs, in this study we utilized a fragment-based drug design approach to design a novel, potent, and safe inhibitor for lipoprotein(a) kringle domain. With the use of fragment library (61,600 fragments) screening, combined with analyses such as MM/GBSA, molecular dynamics simulation (MD), and principal component analysis, we successfully identified molecules effective against the kringle domains of Lipoprotein(a). The hybridization process (Breed) of the best fragments generated a novel 249 hybrid molecules, among them 77 exhibiting superior binding affinity (≤ -7 kcal/mol) compared to control AZ-02 (-6.9 kcal/mol), Importantly, the top ten molecules displayed high similarity to the control AZ-02. Among the top ten molecules, BR1 exhibited the best docking energy (-11.85 kcal/mol ), and higher stability within the protein LBS site, demonstrating the capability to counteract the pathophysiological effects of lipoprotein(a) [Lp(a)]. Additionally, principal component analysis (PCA) highlighted a similar trend of motion during the binding of BR1 and the control compound (AZ-02), limiting protein mobility and reducing conformational space. Moreover, ADMET analysis indicated favorable drug-like properties, with BR1 showing minimal violations of Lipinski's rules. Overall, the identified compounds hold promise as potential therapeutics, addressing a critical need in cardiovascular medicine. Further preclinical and clinical evaluations are needed to validate their efficacy and safety, potentially ushering in a new era of targeted therapies for CVDs.


Subject(s)
Cardiovascular Diseases , Drug Design , Kringles , Lipoprotein(a) , Lipoprotein(a)/metabolism , Lipoprotein(a)/chemistry , Cardiovascular Diseases/drug therapy , Humans , Molecular Dynamics Simulation
3.
Ecotoxicol Environ Saf ; 262: 115194, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37385018

ABSTRACT

Aflatoxin B1 (AFB1) is a common environmental pollutant that poses a major hazard to both humans and animals. Acacia senegal (Gum) is well-known for having antioxidant and anti-inflammatory bioactive compounds. Our study aimed to scout the nephroprotective effects of Acacia gum (Gum) against AFB1-induced renal damage. Four groups of rats were designed: Control, Gum (7.5 mg/kg), AFB1 (200 µg/kg b.w) and AFB1-Gum, rats were co-treated with both Gum and AFB1. Gas chromatography-mass spectrometry (GC/MS) analysis was done to determine the phytochemical constituents in Gum. AFB1 triggered profound alterations in kidney function parameters (urea, creatinine, uric acid, and alkaline phosphatase) and renal histological architecture. Additionally, AFB1 exposure evoked up-regulation of mRNA expression levels of inflammatory cytokines, including interleukin-6 (IL-6), tumor necrosis factor α (TNFα), inducible nitric oxide synthase (iNOS), and nuclear factor kB p65 (NF-κB/P65) in renal tissue. The oxidative distress and apoptotic cascade are also instigated by AFB1 intoxication as depicted in down-regulated protein expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) and superoxide dismutase type 1 (SOD1) along with upregulation of cytochrome c (Cyto c), and cleaved Caspase3 (Casp3-17 and 19) in renal tissue. In conclusion, current study obviously confirms the alleviating effects of Gum supplementation against AFB1-induced renal dysfunction, oxidative harm, inflammation, and cell death. These mitigating effects are suggested to be attributed to Gum's antioxidant and anti-inflammatory activities. Our results recommend Gum supplementation as add-on agents to food that might aid in protection from AFB1-induced nephrotoxicity.

4.
Biomedicines ; 11(4)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37189743

ABSTRACT

Human colon microbiota produce a metabolite called urolithin A (URO A) from ellagic acid and linked compounds, and this metabolite has been demonstrated to have antioxidant, anti-inflammatory, and antiapoptotic activities. The current work examines the various mechanisms through which URO A protects against doxorubicin (DOX)-induced liver injury in Wistar rats. In this experiment, Wistar rats were administered DOX intraperitoneally (20 mg kg-1) on day 7 while given URO A intraperitoneally (2.5 or 5 mg kg-1 d-1) for 14 days. The serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma glutamyl transferase (GGT) were measured. Hematoxylin and eosin (HE) staining was used to evaluate histopathological characteristics, and then antioxidant and anti-inflammatory properties were evaluated in tissue and serum, respectively. We also looked at how active caspase 3 and cytochrome c oxidase were in the liver. The findings demonstrated that supplementary URO A therapy clearly mitigated DOX-induced liver damage. The antioxidant enzymes SOD and CAT were elevated in the liver, and the levels of inflammatory cytokines, such as TNF-α, NF-kB, and IL-6, in the tissue were significantly attenuated, all of which complemented the beneficial effects of URO A in DOX-induced liver injury. In addition, URO A was able to alter the expression of caspase 3 and cytochrome c oxidase in the livers of rats that were subjected to DOX stress. These results showed that URO A reduced DOX-induced liver injury by reducing oxidative stress, inflammation, and apoptosis.

5.
Healthcare (Basel) ; 11(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36900665

ABSTRACT

Seeking an alternative approach for detecting adverse drug reactions (ADRs) in coronavirus patients (COVID-19) and enhancing drug safety, a retrospective study of six months was conducted utilizing an electronic medical record (EMR) database to detect ADRs in hospitalized patients for COVID-19, using "ADR prompt indicators" (APIs). Consequently, confirmed ADRs were subjected to multifaceted analyses, such as demographic attribution, relationship with specific drugs and implication for organs and systems of the body, incidence rate, type, severity, and preventability of ADR. The incidence rate of ADRs is 37%, the predisposition of organs and systems to ADR is observed remarkably in the hepatobiliary and gastrointestinal systems at 41.8% vs. 36.2%, p < 0.0001, and the classes of drugs implicated in the ADRs are lopinavir-ritonavir 16.3%, antibiotics 24.1%, and hydroxychloroquine12.8%. Furthermore, the duration of hospitalization and polypharmacy are significantly higher in patients with ADRs at 14.13 ± 7.87 versus 9.55 ± 7.90, p < 0.001, and 9.74 ± 5.51 versus 6.98 ± 4.36, p < 0.0001, respectively. Comorbidities are detected in 42.5% of patients and 75.2%, of patients with DM, and HTN, displaying significant ADRs, p-value < 0.05. This is a symbolic study providing a comprehensive acquaintance of the importance of APIs in detecting hospitalized ADRs, revealing increased detection rates and robust assertive values with insignificant costs, incorporating the hospital EMR database, and enhancing transparency and time effectiveness.

6.
Sci Rep ; 13(1): 1771, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36720977

ABSTRACT

Vedolizumab is a humanized monoclonal antibody used to treat moderate-to-severe inflammatory bowel disease (IBD). The aim of the study was to assess the effectiveness of the induction of vedolizumab trough level in predicting short-term (week 14) clinical outcomes, and covariates that affect the response in Saudi Arabian patients. This prospective, real-life study included a total of 16 patients (4 Crohn's disease (CD) and 12 ulcerative colitis (UC)) with a confirmed diagnosis of IBD and generally naïve to receiving vedolizumab therapy. Using ELISA assay, vedolizumab induction trough and peak levels were measured at weeks 0, 2, and 6. The follow-up assessment was at week 14, where clinical outcomes were measured using the partial Mayo score for UC, and the CD activity score (CDAI), and Harvey Bradshaw index (HBI) for CD. At week 14, 9 patients (52.9%) out of 16 patients demonstrated response to therapy; clinical remission was reported in 5 patients (29.4%), and in 4 cases a clinical response was noted (23.5%). Clinical remission at week 14 was linked significantly with week 6 median vedolizumab levels in responders (25.1 µg/ml 95% CI: 16.5-42.9) compared to non-responders (7.7 µg/ml, 95% CI: 4.6-10.6) (P = 0.002). Receiver operator curve analysis at week 6 identified a cut-off > 8.00 µg/mL for short-term clinical remission. Also, at week 14, BMI significantly correlated with week 6 vedolizumab trough levels (P = 0.02). No other covariates correlated with drug levels at any time point examined. Week 6 early vedolizumab trough level measurements in IBD patients predicted short-term week 14 clinical remission.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Humans , Saudi Arabia , Drug Monitoring , Prospective Studies , Inflammatory Bowel Diseases/drug therapy , Crohn Disease/diagnosis , Crohn Disease/drug therapy , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/drug therapy
7.
Food Chem Toxicol ; 171: 113537, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36442736

ABSTRACT

Repeated acrylamide (ACR) exposure in experimental animals and humans causes variable degrees of neuronal damage. Because of its unique features, several green synthesized nanomaterials are explored for neuromodulatory activity. Hence, this study investigated the effect of green synthesized zinc oxide nanoparticles using Moriga olifera leaves extract (MO-ZnONP) against acrylamide (ACR)-induced neurobehavioral and neurotoxic impacts in rat. Forty male Sprague Dawley rats were distributed into four groups orally given distilled water, MO-ZnONP (10 mg/kg b.wt), ACR (20 mg/kg b.wt), or MO-ZnONP + ACR for 60 days. Gait quality and muscular, motor, and sensory function were assessed. Acetylcholinesterase (AChE), dopamine, catalase, malondialdehyde (MDA), and Zn brain contents were determined. Brain histopathology and immunohistochemical localization of the amyloid-ß protein and abnormal Tau were performed. The results revealed that MO-ZnONP significantly reduced ACR-induced sensory dysfunctions, hind limb abnormality, and motor deficits. Additionally, the ACR-induced increase in dopamine and AChE were significantly supressed by MO-ZnONP. Besides, MO-ZnONP significantly restored catalase and Zn content but reduced increased MDA brain content resulting from ACR. Furthermore, the ACR-induced neurodegenerative changes and increased amyloid-ß and phosphorylated Tau immunoexpression was significantly abolished by MO-ZnONP. Conclusively, MO-ZnONP could be used as a biologically effective compound for mitigating ACR's neurotoxic and neurobehavioral effects.


Subject(s)
Nanoparticles , Neurotoxicity Syndromes , Zinc Oxide , Humans , Rats , Male , Animals , Rats, Sprague-Dawley , Oxidative Stress , Catalase/metabolism , Zinc Oxide/pharmacology , Acrylamide/toxicity , Acetylcholinesterase/metabolism , Dopamine , Neurotoxicity Syndromes/etiology
8.
3 Biotech ; 13(1): 22, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36568496

ABSTRACT

The present study evaluates the potential of neuroprotective phytochemicals-rutin (R), resveratrol (Res), 17ß-estradiol (17ß-E2), and their different combinations against chronic immobilization stress (CIS)-induced depression-like behaviour in male albino mice. Here, the mice were exposed to stress via immobilization of their four limbs under a restrainer for 6 h daily until 7 days of the induction after 30 min of respective drug treatment in different mice groups. The result found the protective effect of these phytoconstituents and their combinations against CIS-induced depression due to their ability to suppress oxidative stress, restore mitochondria, HPA-axis modulation, neurotransmitter level, stress hormones, and inflammatory markers. Also, the combination drug regimens of these phytoconstituents showed synergistic results in managing the physiological and biochemical features of depression. Thus, these neuroprotective could be utilized well in combination to manage depression-like symptoms during episodic stress. Furthermore, such results could be well justified when administered in polyherbal formulation with these neuroprotective as major components. In addition, an advanced study can be designed at the molecular and epigenetics level using a formulation based on these neuroprotective.

9.
Antioxidants (Basel) ; 11(12)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36552609

ABSTRACT

Background: Autophagy can confer protection to pancreatic ß-cells from the harmful effects of metabolic stress by delaying apoptosis. Curcumin (CUR) alleviates oxidative and endoplasmic reticulum (ER) stress, activates autophagy, reduces inflammation, and decreases ß-cell damage in type I diabetes. Liposomal CUR (LPs-CUR) has a higher therapeutic value and better pharmacokinetics than CUR. Objectives: We determined LPs-CUR's ability to alleviate stress, reduce ß-cell damage and unraveled the mechanism underlying its protective effect using a streptozotocin (STZ)-induced type I diabetic rat model. Methods: Sprague−Dawley rats were grouped into vehicle control, STZ-diabetic (STZ 65 mg/kg), STZ-diabetic-3-MA (3-methyladenine [3-MA] 10 mg/kg b.wt), STZ. diabetic-LPs-CUR (LPs-CUR 10 mg/kg b.wt), and STZ diabetic-LPs-CUR-3-MA (LPs-CUR 10 mg/kg b.wt; 3-MA 10 mg/kg b.wt). Results: LPs-CUR significantly reduced blood glucose, oxidative stress, and cellular inflammation in the pancreatic tissue (p < 0.001). ER stress-dependent genes included ATF-6, eIF-2, CHOP, JNK, BiP, and XBP LPs-CUR significantly suppressed fold changes, while it upregulated the autophagic markers Beclin-1 and LC3-II. Conclusions: LP-CUR ameliorates ß-cell damage by targeting the autophagy pathway with the regulatory miRNAs miR-137 and miR-29b, which functionally abrogates ER stress in ß-cells. This study presents a new therapeutic target for managing type I diabetes using miR-137 and miR-29b.

10.
Medicina (Kaunas) ; 58(11)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36363550

ABSTRACT

Background and ObjectivesEpilepsy is a chronic brain disease, with inherent and noninherent factors. Although over 20 anti-seizure medications (ASMs) are commercially available, nearly one-third of patients develop drug-resistant epilepsy. We evaluated the association between the clinical features and the methyl tetrahydrofolate (MTHFR) rs1801133 polymorphism and ASMs response among pediatric patients with epilepsy. Materials and Methods This was a multicenter, retrospective, case-control study of 101 children with epilepsy and 59 healthy children in Jeddah. The MTHFR rs1801133 polymorphism was genotyped using the real-time polymerase chain reaction TaqMan Genotyping Assay. Results Among the patients with epilepsy, 56 and 45 showed good and poor responses to ASMs, respectively. No significant genetic association was noted between the single-nucleotide polymorphism (SNP) rs1801133 within the MTHFR gene and the response to ASMs. However, a significant association was noted between reports of drug-induced toxicity and an increase in allele A frequencies. The MTHFR rs1801133 genotype was significantly associated with the development of electrolyte disturbance among good and poor responders to ASMs. Conclusion This is the first pharmacogenetic study of MTHFR in patients with epilepsy in Saudi Arabia that found no significant association between the MTHFR SNP rs1801133 and gene susceptibility and drug responsiveness. A larger sample size is needed for testing gene polymorphisms in the future.


Subject(s)
Genetic Predisposition to Disease , Methylenetetrahydrofolate Reductase (NADPH2) , Humans , Child , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Case-Control Studies , Retrospective Studies , Saudi Arabia , Polymorphism, Single Nucleotide/genetics , Genotype , Tetrahydrofolates/genetics
11.
Toxins (Basel) ; 14(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-36136543

ABSTRACT

Aflatoxin B1 (AF) is an unavoidable environmental pollutant that contaminates food, feed, and grains, which seriously threatens human and animal health. Arabic gum (AG) has recently evoked much attention owing to its promising therapeutic potential. Thus, the current study was conducted to look into the possible mechanisms beyond the ameliorative activity of AG against AF-inflicted hepatic injury. Male Wistar rats were assigned into four groups: Control, AG (7.5 g/kg b.w/day, orally), AF (200 µg/kg b.w), and AG plus AF group. AF induced marked liver damage expounded by considerable changes in biochemical profile and histological architecture. The oxidative stress stimulated by AF boosted the production of plasma malondialdehyde (MDA) level along with decreases in the total antioxidant capacity (TAC) level and glutathione peroxidase (GPx) activity. Additionally, AF exposure was associated with down-regulation of the nuclear factor erythroid2-related factor2 (Nrf2) and superoxide dismutase1 (SOD1) protein expression in liver tissue. Apoptotic cascade has also been evoked following AF-exposure, as depicted in overexpression of cytochrome c (Cyto c), cleaved Caspase3 (Cl. Casp3), along with enhanced up-regulation of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, inducible nitric oxide synthase (iNOS), and nuclear factor kappa-B transcription factor/p65 (NF-κB/p65) mRNA expression levels. Interestingly, the antioxidant and anti-inflammatory contents of AG may reverse the induced oxidative damage, inflammation, and apoptosis in AF-exposed animals.


Subject(s)
Environmental Pollutants , NF-E2-Related Factor 2 , Aflatoxin B1/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Caspase 3/metabolism , Cytochromes c/metabolism , Cytochromes c/pharmacology , Environmental Pollutants/metabolism , Glutathione Peroxidase/metabolism , Inflammation Mediators/metabolism , Interleukins/metabolism , Liver/metabolism , Male , Malondialdehyde/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress , RNA, Messenger/metabolism , Rats , Rats, Wistar , Superoxide Dismutase-1/metabolism , Superoxides/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Front Neurosci ; 16: 915122, 2022.
Article in English | MEDLINE | ID: mdl-35958986

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease and the most prevalent form of dementia. The generation of oxygen free radicals and oxidative damage is believed to be involved in the pathogenesis of AD. It has been suggested that date palm, a plant rich in phenolic compounds and flavonoids, can provide an alternative treatment to fight memory loss and cognitive dysfunction due to its potent antioxidant activity. Thus, we studied the effect of flavonoids present in date palm on Aß1-40 amyloid formation using molecular docking and molecular dynamics simulation. AutoDock. Myricetin was used as a positive control drug. The flavonoids Diosmetin, Luteolin, and Rutin were found to be potent inhibitors of aggregation (docking energies ≤ -8.05 kcal mol-1) targeting Aß1-40 fibrils (both 2LMO and 6TI5), simultaneously. Further screening by physicochemical properties and drug-likeness analysis suggested that all flavonoids except Rutin followed Lipinski's rule of five. Rutin was, thus, taken as a negative control (due to its violation of Lipinski's rule) to compare its dynamics with Diosmetin. Diosmetin exhibited the highest positive scores for drug likeness. Since Luteolin exhibited moderate drug-likeness and better absorption properties, it was also included in molecular dynamics simulation. Molecular dynamics of shortlisted compounds (Rutin, Diosmetin, and Luteolin) were performed for 200 ns, and the results were analyzed by monitoring root mean square deviations (RMSD), root mean square fluctuation (RMSF) analysis, the radius of gyration (Rg), and solvent accessible surface area (SASA). The results proved the formation of a stable protein-compound complex. Based on binding energies and non-bonded interactions, Rutin and Luteolin emerged as better lead molecules than Diosmetin. However, high MW (610.5), lowest absorption rate (16.04%), and more than one violation of Lipinski's rule make Rutin a less likely candidate as an anti-amyloidogenic agent. Moreover, among non-violators of Lipinski's rule, Diosmetin exhibited a greater absorption rate than Luteolin as well as the highest positive scores for drug-likeness. Thus, we can conclude that Diosmetin and Luteolin may serve as a scaffold for the design of better inhibitors with higher affinities toward the target proteins. However, these results warrant in-vitro and in-vivo validation before practical use.

13.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35745655

ABSTRACT

Although the combination of antibiotics is generally well-tolerated, they may have nephrotoxic effects. This study investigated whether tigecycline (TG) and gentamicin (GM) co-administration could accelerate renal damage. Male Wistar rats were randomly divided into six experimental groups: the control, TG7 (tigecycline, 7 mg/kg), TG14 (tigecycline, 14 mg/kg), GM (gentamicin, 80 mg/kg), TG7+GM, and TG14+GM groups. The combination of TG and GM evoked renal damage seen by the disruption of kidney function tests. The perturbation of renal tissue was mainly confounded to the TG and GM-induced oxidative damage, which was exhibited by marked increases in renal MDA (malondialdehyde) along with a drastic reduction in GSH (reduced-glutathione) content and CAT (catalase) activity compared to their individual treatments. More obvious apoptotic events and inflammation were also revealed by elevating the annexin-V and interleukin-6 (IL-6) levels, aside from the upregulation of renal PCNA (proliferating cell nuclear antigen) expression in the TG and GM concurrent treatment. The principal component analysis indicated that creatinine, urea, annexin-V, IL-6, and MDA all played a role in discriminating the TG and GM combined toxicity. Oxidative stress, inflammatory response, and apoptosis were the key mechanisms involved in this potentiated toxicity.

14.
Biomedicines ; 10(5)2022 May 01.
Article in English | MEDLINE | ID: mdl-35625785

ABSTRACT

Recent studies have proposed that adequate intake of Vitamin K (VK) is associated with a low risk of fracture and high bone mineral density (BMD) to improve skeletal health in adults. This systematic review was designed to summarize the most relevant and updated evidence discussing the relationship between VK and bone. It explores the effect of VK deficiency and its supplementation on various bone parameters. Methods: The distinct databases such as PubMed, the Cochrane Library, Google Scholar, National Clinical Trials, Current Controlled Trials, and Clinical Trials were searched up to Jan 2020 to identify eligible trials. All relevant randomized controlled trial studies with any oral dosage form of VK supplement administered for at least six months and assessing BMD or fracture in adults were extracted. Finally, two independent reviewers identified 20 relevant citations for the systematic review and extracted data in tabular form. Results: The meta-analysis was performed with all studies, including postmenopausal and osteoporotic females, for both total clinical and vertebral fracture outcomes. The quantitative analysis showed that the odds ratios (OR) of any fracture were lower for VK as compared to control [OR 0.42 (95% CI 0.27 to 0.66)] for vertebral fractures and OR of 0.44 (95% CI 0.23 to 0.88) for clinical fracture. For the BMD, a meta-analysis of the pooled effect of interventional studies suggested a non-significant association between the use of VK and improvement in femoral BMD (CI 95%, p = 0.08 [-0.03-0.20]). Conclusion: VK decreases general fracture risk, and it can be an option to counter bone loss disorders. However, insufficient evidence is available regarding the significant impact of VK on femoral neck BMD. Therefore, further studies are required to establish the therapeutic value of VK as a treatment for osteoporosis.

15.
Biomed Res Int ; 2022: 7380147, 2022.
Article in English | MEDLINE | ID: mdl-35535039

ABSTRACT

Staphylococcus aureus is a major human pathogen that is sometimes resistant to vancomycin. In this study, the prevalence of vancomycin-resistant Staphylococcus aureus (VRSA) was studied. 100 isolates of S. aureus were identified based on biochemical and molecular evidence. The antibiotic susceptibility of the studied isolates was tested against 13 antibiotics by the disc diffusion method that showed 24 vancomycin-resistant isolates. The minimum inhibitory concentrations (MICs) were estimated by the agar dilution method to determine vancomycin intermediate-resistant S. aureus (VISA) and VRSA. The resistance gene cluster (vanA, vanR, vanH, and vanY) was amplified by PCR and then sequenced. Amplification of vanA and vanR genes showed that they are present in 21.4% and 14.3% of VRSA isolates, respectively, whereas none of the studied genes has been detected in VISA strains. A significant antimicrobial effect toward VRSA isolates using silver nanoparticles (AgNPs) synthesized from S. aureus and rosemary leaves was recorded. This study confirmed the existence of VRSA strains in Egypt. Furthermore, the use of silver nanoparticles inhibits these vancomycin-resistant S. aureus strains in vitro.


Subject(s)
Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Egypt , Humans , Microbial Sensitivity Tests , Silver/pharmacology , Staphylococcal Infections/epidemiology , Staphylococcus aureus , Vancomycin/pharmacology , Vancomycin Resistance/genetics
16.
Antibiotics (Basel) ; 11(3)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35326790

ABSTRACT

The isolation and assessment of the active constituents in polar and non-polar crude extracts of Saussurea costus roots as antifungal agents, against Candida albicans and non-C. albicans (NAC) species, was the aim of this current investigation. The SEM "Scanning electron microscopy" imaging provided potential action modes of n-hexane extract (nhhE) toward Candida spp., whereas the TLC-DB "Thin layer chromatography-direct bioautography" was employed for detecting the anticandidal compounds. nhhE had the greatest biocidal activity against all strains and clinical isolates of Candida spp. with maximum zones of inhibition. SEM revealed the occurrence of irregular, dense inclusions of C. albicans cell walls after treatment with nhhE for 12 h. Complete morphological distortions with lysed membranes and deterioration signs appeared in most treated cells of C. parapsilosis. The most effectual compound with anticandidal activity was isolated using TLC-BD and identified as sesquiterpene by GC/MS analysis. The infra-red analysis revealed the presence of lactone ring stretching vibrations at 1766.72 cm-1. The anticandidal activity of nhhE of S. costus roots was confirmed from the results, and the treated cotton fabrics with nhhE of S. costus possessed observable activity against C. albicans. Data could recommend the practical usage of S. costus extracts, particularly nhhE, as influential natural bioactive sources for combating pathogenic Candida spp.

17.
J Healthc Eng ; 2022: 7364704, 2022.
Article in English | MEDLINE | ID: mdl-35310199

ABSTRACT

Prostate cancer is the main cause of death over the globe. Earlier detection and classification of cancer is highly important to improve patient health. Previous studies utilized statistical and machine learning (ML) techniques for prostate cancer detection. However, several challenges that exist in the investigation process are the existence of high dimensionality data and less number of training samples. Metaheuristic algorithms can be used to resolve the curse of dimensionality and improve the detection rate of artificial intelligence (AI) techniques. With this motivation, this article develops an artificial intelligence based feature selection with deep learning model for prostate cancer detection (AIFSDL-PCD) using microarray gene expression data. The AIFSDL-PCD technique involves preprocessing to enhance the input data quality. In addition, a chaotic invasive weed optimization (CIWO) based feature selection (FS) technique for choosing an optimal subset of features shows the novelty of the work. Moreover, the deep neural network (DNN) model can be applied as a classification model to detect the existence of prostate cancer in the microarray gene expression data. Furthermore, the hyperparameters of the DNN model can be effectively adjusted by the use of RMSprop optimizer. The design of CIWO based FS technique helps for reducing the computational complexity and improve the classification accuracy. The experimental results highlighted the betterment of the AIFSDL-PCD approach on the other techniques with respect to distinct measures.


Subject(s)
Deep Learning , Prostatic Neoplasms , Algorithms , Artificial Intelligence , Gene Expression , Humans , Male , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics
18.
Biomedicines ; 10(1)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35052847

ABSTRACT

Valproic acid (VPA) has toxic metabolites that can elevate oxidative stress markers, and the hepatotoxicity of VPA has been reported. Coenzyme Q10 (CoQ10) is one of the most widely used antioxidants. The effect of CoQ10 on epileptogenesis and VPA hepatotoxicity were examined. Rats were randomly divided into five groups: the control group received 0.5% methylcellulose by oral gavages daily and saline by intraperitoneal injection three times weekly. The PTZ group received 1% methylcellulose by gavages daily and 30 mg/kg PTZ by intraperitoneal injection three times weekly. The valproic acid group received 500 mg/kg valproic acid by gavage and 30 mg/kg PTZ, as above. The CoQ10 group received 200 mg/kg CoQ10 by gavages daily and 30 mg/kg PTZ, as above. The Valproic acid + CoQ10 group received valproic acid and CoQ10, as above. Results: CoQ10 exhibited anticonvulsant activity and potentiated the anticonvulsant effect of VPA. CoQ10 combined with VPA induced a more significant reduction in oxidative stress and improved the histopathological changes in the brain and liver compared to VPA treatment. In addition, CoQ10 reduced the level of toxic VPA metabolites. These findings suggest that the co-administration of CoQ10 with VPA in epilepsy might have therapeutic potential by increasing antiepileptic activity and reducing the hepatotoxicity of VPA.

19.
Arab J Chem ; 14(3): 102983, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34909062

ABSTRACT

A novel corona virus SARS-CoV-2 has led to an outbreak of the highly infectious pandemic COVID-19 complicated viral pneumonia. Patients with risk factors frequently develop secondary infections where the role of appropriate antibiotics is mandatory. However, the efforts of drug repurposing lead to recognizing the role of certain antibiotics beyond the management of infection. The current review provided the detailed antiviral, immunomodulatory effect, unique pharmacokinetic profile of two antibiotics namely azithromycin (AZ) and doxycycline (DOX). It summarizes current clinical trials and concerns regarding safety issues of these drugs. Azithromycin (AZ) has amazing lung tissue access, wide range antibacterial efficacy, conceivable antiviral action against COVID-19. It also showed efficacy when combined with other antiviral drugs in limited clinical trials, but many clinicians raise concerns regarding cardiovascular risk in susceptible patients. DOX has a considerable role in the management of pneumonia, it has some advantages including cardiac safety, very good access to lung tissue, potential antiviral, and immunomodulation impact by several mechanisms. The pharmacological profiles of both drugs are heightening considering these medications for further studies in the management of COVID-19.

20.
Biomed Res Int ; 2021: 7202447, 2021.
Article in English | MEDLINE | ID: mdl-34497854

ABSTRACT

This study is aimed at comparing the antidiabetic and antioxidant potential of fenugreek and buckthorn which are commonly used in modulating diabetes in the Middle East. In this study, the antioxidant and antidiabetic activity of the aqueous extracts of the leaf and seed of fenugreek and buckthorn was tested in streptozotocin-induced diabetic male rats fed with a fat-rich diet for 8 weeks. Thirty-six male albino rats were divided into 6 groups (n = 6); the 1st group was the negative control. Diabetes was induced in the other 30 rats using streptozotocin, which were then divided into 5 groups; the 2nd was the untreated positive diabetic group, the 3rd was treated with fenugreek leaf aqueous extract, the 4th was treated with the fenugreek seed aqueous extract, the 5th was treated with buckthorn leaf aqueous extract, and the 6th was treated with buckthorn seed aqueous extract. The positive control group showed an increase in blood sugar, glycated hemoglobin, liver function enzymes, lactate dehydrogenase, kidney indices, total cholesterol, triglycerides, low- and very-low-density lipoprotein, immunoglobulins, and lipid peroxidation and a decrease in high-density lipoprotein, albumin, and antioxidant activity. The histology of the liver and testes showed severe histopathological alterations. Rats of groups 4-6 that were treated with the aqueous extract of the leaf and seed extract of fenugreek and buckthorn showed improvement of all biochemical and histopathological parameters. The seed extract of fenugreek and buckthorn showed more antioxidant activity than their leaves.


Subject(s)
Antioxidants/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Rhamnus/chemistry , Trigonella/chemistry , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/pathology , Male , Plant Leaves/chemistry , Rats , Rats, Sprague-Dawley , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...