Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38067848

ABSTRACT

Air writing is one of the essential fields that the world is turning to, which can benefit from the world of the metaverse, as well as the ease of communication between humans and machines. The research literature on air writing and its applications shows significant work in English and Chinese, while little research is conducted in other languages, such as Arabic. To fill this gap, we propose a hybrid model that combines feature extraction with deep learning models and then uses machine learning (ML) and optical character recognition (OCR) methods and applies grid and random search optimization algorithms to obtain the best model parameters and outcomes. Several machine learning methods (e.g., neural networks (NNs), random forest (RF), K-nearest neighbours (KNN), and support vector machine (SVM)) are applied to deep features extracted from deep convolutional neural networks (CNNs), such as VGG16, VGG19, and SqueezeNet. Our study uses the AHAWP dataset, which consists of diverse writing styles and hand sign variations, to train and evaluate the models. Prepossessing schemes are applied to improve data quality by reducing bias. Furthermore, OCR character (OCR) methods are integrated into our model to isolate individual letters from continuous air-written gestures and improve recognition results. The results of this study showed that the proposed model achieved the best accuracy of 88.8% using NN with VGG16.

2.
Comput Math Organ Theory ; : 1-19, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36466587

ABSTRACT

With the continuous spread of the COVID-19 pandemic, misinformation poses serious threats and concerns. COVID-19-related misinformation integrates a mixture of health aspects along with news and political misinformation. This mixture complicates the ability to judge whether a claim related to COVID-19 is information, misinformation, or disinformation. With no standard terminology in information and disinformation, integrating different datasets and using existing classification models can be impractical. To deal with these issues, we aggregated several COVID-19 misinformation datasets and compared differences between learning models from individual datasets versus one that was aggregated. We also evaluated the impact of using several word- and sentence-embedding models and transformers on the performance of classification models. We observed that whereas word-embedding models showed improvements in all evaluated classification models, the improvement level varied among the different classifiers. Although our work was focused on COVID-19 misinformation detection, a similar approach can be applied to myriad other topics, such as the recent Russian invasion of Ukraine.

3.
Concurr Comput ; 34(28): e7390, 2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36718458

ABSTRACT

The coronavirus (COVID-19) started in China in 2019, has spread rapidly in every single country and has spread in millions of cases worldwide. This paper presents a proposed approach that involves identifying the relative impact of COVID-19 on a specific gender, the mortality rate in specific age, investigating different safety measures adopted by each country and their impact on the virus growth rate. Our study proposes data-driven analysis and prediction modeling by investigating three aspects of the pandemic (gender of patients, global growth rate, and social distancing). Several machine learning and ensemble models have been used and compared to obtain the best accuracy. Experiments have been demonstrated on three large public datasets. The motivation of this study is to propose an analytical machine learning based model to explore three significant aspects of COVID-19 pandemic as gender, global growth rate, and social distancing. The proposed analytical model includes classic classifiers, distinctive ensemble methods such as bagging, feature based ensemble, voting and stacking. The results show a superior prediction performance comparing with the related approaches.

4.
Infect Dis (Auckl) ; 13: 1178633720928356, 2020.
Article in English | MEDLINE | ID: mdl-32565678

ABSTRACT

BACKGROUND: In health and medicine, people heavily use the Internet to search for information about symptoms, diseases, and treatments. As such, the Internet information can simulate expert medical doctors, pharmacists, and other health care providers. AIM: This article aims to evaluate a dataset of search terms to determine whether search queries and terms can be used to reliably predict skin disease breakouts. Furthermore, the authors propose and evaluate a model to decide when to declare a particular month as Epidemic at the US national level. METHODS: A Model was designed to distinguish a breakout in skin diseases based on the number of monthly discovered cases. To apply this model, the authors correlated Google Trends of popular search terms with monthly reported Rubella and Measles cases from Centers for Disease Control and Prevention (CDC). Regressions and decision trees were used to determine the impact of different terms to trigger the occurrence of epidemic classes. RESULTS: Results showed that the volume of search keywords for Rubella and Measles rises when the volume of those reported diseases rises. Results also implied that the overall process was successful and should be repeated with other diseases. Such process can trigger different actions or activities to be taken when a certain month is declared as "Epidemic." Furthermore, this research has shown great interest for vaccination against Measles and Rubella. CONCLUSIONS: The findings suggest that the search queries and keyword trends can be truly reliable to be used for the prediction of disease outbreaks and some other related knowledge extraction applications. Also search-term surveillance can provide an additional tool for infectious disease surveillance. Future research needs to re-apply the model used in this article, and researchers need to question whether characterizing the epidemiology of Coronavirus Disease 2019 (COVID-19) pandemic waves in United States can be done through search queries and keyword trends.

5.
Math Biosci Eng ; 17(3): 1922-1939, 2019 12 19.
Article in English | MEDLINE | ID: mdl-32233515

ABSTRACT

News claims that travel the Internet and online social networks (OSNs) originate from different, sometimes unknown sources, which raises issues related to the credibility of those claims and the drivers behind them. Fact-checking websites such as Snopes, FactCheck, and Emergent use human evaluators to investigate and label news claims, but the process is labor- and time-intensive. Driven by the need to use data analytics and algorithms in assessing the credibility of news claims, we focus on what can be generalized about evaluating human-labeled claims. We developed tools to extract claims from Snopes and Emergent and used public datasets collected by and published on those websites. Claims extracted from those datasets were supervised or labeled with different claim ratings. We focus on claims with definite ratings-false, mostly false, true, and mostly true, with the goal of identifying distinctive features that can be used to distinguish true from false claims. Ultimately, those features can be used to predict future unsupervised or unlabeled claims. We evaluate different methods to extract features as well as different sets of features and their ability to predict the correct claim label. By far, we noticed that OSN websites report high rates of false claims in comparison with most of the other website categories. The rate of reported false claims is higher than the rate of true claims in fact-checking websites in most categories. At the content-analysis level, false claims tend to have more negative tones in sentiments and hence can provide supporting features to predict claim classification.

6.
Article in English | MEDLINE | ID: mdl-34408917

ABSTRACT

Despite the linear relation between the number of observed spectra and the searching time, the current protein search engines, even the parallel versions, could take several hours to search a large amount of MSMS spectra, which can be generated in a short time. After a laborious searching process, some (and at times, majority) of the observed spectra are labeled as non-identifiable. We evaluate the role of machine learning in building an efficient MSMS filter to remove non-identifiable spectra. We compare and evaluate the deep learning algorithm using 9 shallow learning algorithms with different configurations. Using 10 different datasets generated from two different search engines, different instruments, different sizes and from different species, we experimentally show that deep learning models are powerful in filtering MSMS spectra. We also show that our simple features list is significant where other shallow learning algorithms showed encouraging results in filtering the MSMS spectra. Our deep learning model can exclude around 50% of the non-identifiable spectra while losing, on average, only 9% of the identifiable ones. As for shallow learning, algorithms of: Random Forest, Support Vector Machine and Neural Networks showed encouraging results, eliminating, on average, 70% of the non-identifiable spectra while losing around 25% of the identifiable ones. The deep learning algorithm may be especially more useful in instances where the protein(s) of interest are in lower cellular or tissue concentration, while the other algorithms may be more useful for concentrated or more highly expressed proteins.

7.
Article in English | MEDLINE | ID: mdl-34430067

ABSTRACT

The diversity of the available protein search engines with respect to the utilized matching algorithms, the low overlap ratios among their results and the disparity of their coverage encourage the community of proteomics to utilize ensemble solutions of different search engines. The advancing in cloud computing technology and the availability of distributed processing clusters can also provide support to this task. However, data transferring and results' combining, in this case, could be the major bottleneck. The flood of billions of observed mass spectra, hundreds of Gigabytes or potentially Terabytes of data, could easily cause the congestions, increase the risk of failure, poor performance, add more computations' cost, and waste available resources. Therefore, in this study, we propose a deep learning model in order to mitigate the traffic over cloud network and, thus reduce the cost of cloud computing. The model, which depends on the top 50 intensities and their m/z values of each spectrum, removes any spectrum which is predicted not to pass the majority voting of the participated search engines. Our results using three search engines namely: pFind, Comet and X!Tandem, and four different datasets are promising and promote the investment in deep learning to solve such type of Big data problems.

SELECTION OF CITATIONS
SEARCH DETAIL
...