Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hand Surg Glob Online ; 3(5): 282-288, 2021 Sep.
Article in English | MEDLINE | ID: mdl-35415568

ABSTRACT

Purpose: We compared 2 commercially available nerve conduits-the Axoguard Nerve Connector, made of porcine small intestine submucosa (SIS), and the NeuraGen Nerve Guide, made of cross-linked bovine type I collagen (Col)-using a rodent model at 4 weeks, specifically focusing on subchronic host responses to the implants. Methods: A unilateral 5-mm sciatic nerve defect was created in 18 male Lewis rats and was repaired with SIS or Col conduits. After 4 weeks, histological evaluations of morphology, collagen content, macrophage polarization, vascularization, axonal regeneration, and myelination were conducted. To achieve a blinded examination, an independent qualified pathologist evaluated the images that were stained with hematoxylin-eosin, α-smooth muscle actin, and Masson trichrome stains. Results: The results showed a dominant macrophage type 2 (M2) response in the SIS group and a dominant macrophage type 1 (M1) response in the Col group. The SIS group showed deeper implant vascularization and fibroblast ingrowth than the Col group. Collagen deposition was higher within the lumen of the Col group than the SIS group. All Col conduits were surrounded by a colocalized staining of Masson trichrome and α-smooth muscle actin, forming a capsule-like structure. Conclusion: Distinctive histological features were identified for each conduit at the cellular level. The SIS conduits had a significantly higher number of host macrophages expressing M2 surface marker CD163, and the Col conduits showed a predominance of host macrophages expressing the M1 surface marker CD80. Data suggest that promoting the M2 response for tissue engineering and regenerative medicine is associated with a remodeling response. In addition, an independent analysis revealed an encapsulation-like appearance around all Col conduits, which is similar to what is seen in breast implant capsules. Clinical relevance: The biomaterial choice for conduit material can play an important role in the host tissue response, with the potential to impact adverse events and patient outcomes.

2.
Micromachines (Basel) ; 10(2)2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30795574

ABSTRACT

In vitro systems comprised of wells interconnected by microchannels have emerged as a platform for the study of cell migration or multicellular models. In the present study, we systematically evaluated the effect of microchannel width on spontaneous myoblast migration across these microchannels-from the proximal to the distal chamber. Myoblast migration was examined in microfluidic devices with varying microchannel widths of 1.5⁻20 µm, and in chips with uniform microchannel widths over time spans that are relevant for myoblast-to-myofiber differentiation in vitro. We found that the likelihood of spontaneous myoblast migration was microchannel width dependent and that a width of 3 µm was necessary to limit spontaneous migration below 5% of cells in the seeded well after 48 h. These results inform the future design of Polydimethylsiloxane (PDMS) microchannel-based co-culture platforms as well as future in vitro studies of myoblast migration.

3.
Acta Biomater ; 78: 165-177, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30059799

ABSTRACT

The repair of nerve gap injuries longer than 3 cm is limited by the need to sacrifice donor tissue and the morbidity associated with the autograft gold standard, while decellularized grafts and biodegradable conduits are effective only in short nerve defects. The advantage of isogenic nerve implants seems to be the release of various growth factors by the denervated Schwann cells. We evaluated the effect of vascular endothelial growth factor, neurotrophins, and pleiotrophin (PTN) supplementation of multi-luminal conduits, in the repair of 3 and 4 cm nerve gaps in the rabbit peroneal nerve. In vitro screening revealed a synergistic regenerative effect of PTN with glial-derived neurotrophic factor (GDNF) in promoting sensory axon density, and motor axonal growth from spinal cord explants. In vivo, pleiotrophins were able to support nerve regrowth across a 3 cm gap. In the 4 cm lesions, PTN-GDNF had a modest effect in the number of axons distal to the implant, while increasing the mean axon diameter (1 ±â€¯0.4; p ≤ 0.001) over PTN or GDNF alone (0.80 ±â€¯0.2, 0.84 ±â€¯0.5; respectively). Some regenerated axons reinnervated muscle targets as indicated by neuromuscular junction staining. However, many were wrapped in Remak bundles, suggesting a delay in axonal sorting, explaining the limited electrophysiological function of the reinnervated muscle, and the modest recovery in toe spreading in the PTN-GDNF repaired animals. These results support the use of synergistic neurotrophic/pleiotrophic growth factors in long gap repair and underscore the need for re-myelination strategies distal to the injury site. STATEMENT OF SIGNIFICANCE: Nerve injuries due to trauma or tumor resection often result in long gaps that are challenging to repair. The best clinical option demands the use of autologous grafts that are associated with serious side effects. Bioengineered nerves are considered a good alternative, particularly if supplemented with growth factors, but current options do not match the regenerative capacity of autografts. This study revealed the synergistic effect of neurotrophins and pleiotrophins designed to achieve a broad cellular regenerative effect, and that GDNF-PTN are able to mediated axonal growth and partial functional recovery in a 4 cm nerve gap injury, albeit delays in remyelination. This report underscores the need for defining an optimal growth factor support for biosynthetic nerve implants.


Subject(s)
Axons/metabolism , Carrier Proteins/pharmacology , Cytokines/pharmacology , Nerve Regeneration/drug effects , Neuregulin-1/pharmacology , Peroneal Nerve/injuries , Peroneal Nerve/physiopathology , Animals , Axons/drug effects , Drug Synergism , Evoked Potentials/drug effects , Mice , Motor Activity/drug effects , Muscles/drug effects , Muscles/innervation , Peroneal Nerve/drug effects , Peroneal Nerve/pathology , Rabbits , Recovery of Function/drug effects , Vascular Endothelial Growth Factor A/pharmacology
4.
Brain Res ; 1619: 72-83, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-25801117

ABSTRACT

In the injured adult nervous system, re-establishment of growth-promoting molecular gradients is known to entice and guide nerve repair. However, incorporation of three-dimensional chemotactic gradients in nerve repair scaffolds, particularly in those with multi-luminal architectures, remains extremely challenging. We developed a method that establishes highly tunable three-dimensional molecular gradients in multi-luminal nerve guides by anchoring growth-factor releasing coiled polymeric fibers onto the walls of collagen-filled hydrogel microchannels. Differential pitch in the coiling of neurotrophin-eluting fibers generated sustained chemotactic gradients that appropriately induced the differentiation of Pheochromocytoma (PC12) cells into neural-like cells along an increasing concentration of nerve growth factor (NGF). Computer modeling estimated the stability of the molecular gradient within the luminal collagen, which we confirmed by observing the significant effects of neurotrophin gradients on axonal growth from dorsal root ganglia (DRG). Neurons growing in microchannels exposed to a NGF gradient showed a 60% increase in axonal length compared to those treated with a linear growth factor concentration. In addition, a two-fold increment in the linearity of axonal growth within the microchannels was observed and confirmed by a significant reduction in the turning angle ratios of individual axons. These data demonstrate the ability of growth factor-loaded polymeric coiled fibers to establish three-dimensional chemotactic gradients to promote and direct nerve regeneration in the nervous system and provides a unique platform for molecularly guided tissue repair.


Subject(s)
Axons/physiology , Chemotaxis/drug effects , Nerve Growth Factor/pharmacology , Nerve Regeneration/drug effects , Animals , Axons/drug effects , Ganglia, Spinal/drug effects , Ganglia, Spinal/physiology , Nerve Growth Factor/metabolism , PC12 Cells , Polymers/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...