Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ Comput Sci ; 9: e1355, 2023.
Article in English | MEDLINE | ID: mdl-37346503

ABSTRACT

Innovative technology and improvements in intelligent machinery, transportation facilities, emergency systems, and educational services define the modern era. It is difficult to comprehend the scenario, do crowd analysis, and observe persons. For e-learning-based multiobject tracking and predication framework for crowd data via multilayer perceptron, this article recommends an organized method that takes e-learning crowd-based type data as input, based on usual and abnormal actions and activities. After that, super pixel and fuzzy c mean, for features extraction, we used fused dense optical flow and gradient patches, and for multiobject tracking, we applied a compressive tracking algorithm and Taylor series predictive tracking approach. The next step is to find the mean, variance, speed, and frame occupancy utilized for trajectory extraction. To reduce data complexity and optimization, we applied T-distributed stochastic neighbor embedding (t-SNE). For predicting normal and abnormal action in e-learning-based crowd data, we used multilayer perceptron (MLP) to classify numerous classes. We used the three-crowd activity University of California San Diego, Department of Pediatrics (USCD-Ped), Shanghai tech, and Indian Institute of Technology Bombay (IITB) corridor datasets for experimental estimation based on human and nonhuman-based videos. We achieve a mean accuracy of 87.00%, USCD-Ped, Shanghai tech for 85.75%, and IITB corridor of 88.00% datasets.

2.
PeerJ Comput Sci ; 8: e1105, 2022.
Article in English | MEDLINE | ID: mdl-36262158

ABSTRACT

Human locomotion is an imperative topic to be conversed among researchers. Predicting the human motion using multiple techniques and algorithms has always been a motivating subject matter. For this, different methods have shown the ability of recognizing simple motion patterns. However, predicting the dynamics for complex locomotion patterns is still immature. Therefore, this article proposes unique methods including the calibration-based filter algorithm and kinematic-static patterns identification for predicting those complex activities from fused signals. Different types of signals are extracted from benchmarked datasets and pre-processed using a novel calibration-based filter for inertial signals along with a Bessel filter for physiological signals. Next, sliding overlapped windows are utilized to get motion patterns defined over time. Then, polynomial probability distribution is suggested to decide the motion patterns natures. For features extraction based kinematic-static patterns, time and probability domain features are extracted over physical action dataset (PAD) and growing old together validation (GOTOV) dataset. Further, the features are optimized using quadratic discriminant analysis and orthogonal fuzzy neighborhood discriminant analysis techniques. Manifold regularization algorithms have also been applied to assess the performance of proposed prediction system. For the physical action dataset, we achieved an accuracy rate of 82.50% for patterned signals. While, the GOTOV dataset, we achieved an accuracy rate of 81.90%. As a result, the proposed system outdid when compared to the other state-of-the-art models in literature.

3.
Sensors (Basel) ; 22(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36146134

ABSTRACT

Resource constraint Consumer Internet of Things (CIoT) is controlled through gateway devices (e.g., smartphones, computers, etc.) that are connected to Mobile Edge Computing (MEC) servers or cloud regulated by a third party. Recently Machine Learning (ML) has been widely used in automation, consumer behavior analysis, device quality upgradation, etc. Typical ML predicts by analyzing customers' raw data in a centralized system which raises the security and privacy issues such as data leakage, privacy violation, single point of failure, etc. To overcome the problems, Federated Learning (FL) developed an initial solution to ensure services without sharing personal data. In FL, a centralized aggregator collaborates and makes an average for a global model used for the next round of training. However, the centralized aggregator raised the same issues, such as a single point of control leaking the updated model and interrupting the entire process. Additionally, research claims data can be retrieved from model parameters. Beyond that, since the Gateway (GW) device has full access to the raw data, it can also threaten the entire ecosystem. This research contributes a blockchain-controlled, edge intelligence federated learning framework for a distributed learning platform for CIoT. The federated learning platform allows collaborative learning with users' shared data, and the blockchain network replaces the centralized aggregator and ensures secure participation of gateway devices in the ecosystem. Furthermore, blockchain is trustless, immutable, and anonymous, encouraging CIoT end users to participate. We evaluated the framework and federated learning outcomes using the well-known Stanford Cars dataset. Experimental results prove the effectiveness of the proposed framework.


Subject(s)
Blockchain , Internet of Things , Computer Security , Ecosystem , Privacy
SELECTION OF CITATIONS
SEARCH DETAIL
...