Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi J Biol Sci ; 29(2): 963-969, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35197764

ABSTRACT

The pectinase enzymes are involved in several industrial applications, and industrial waste is one of the largest environmental pollutants, so this study aims to Endo-polygalacturonase (endo-PG) producing using Aspergillus niger AUMC 4156, Penicillium oxalicum AUMC 4153 and P. variotii AUMC 4149 by using some agro-industrial wastes (dried orange peel and sugar beet pulp) as a sole raw carbon source for degradation these waste in the process of urban wastes disposal. The fermentation process was carried out as a submerged culture technique under both shaken and static culture conditions. A. niger AUMC 4156 was the most promising producer of endo-PG under static conditions while P. oxalicum AUMC 4153 was the highest producer of endo-PG under shaken conditions. Sugar beet pulp proved to be the most preferable to orange peel as the only source of carbon in both shaken and static cultures. The medium that encompassing orange peel as a single carbon source afforded the highest protein content with all tested fungal strains in stirred and static cultures in comparison with sugar beet pulp. The highest activity of endo-polygalacuronase that produced using A. niger AUMC 4156 and P. oxalicum AUMC 4153 was achieved by using sugar beet pulp at 3% concentration under static cultures, meanwhile maximal enzyme activity produced by both fungal strains required 2% sugar beet pulp under shaken cultures. Sugar beet pulp showed promised potential as a good inducer for endo-polygalacturoase production, and enzymes production depended on fungal strains, culture medium, and submerged fermentation conditions.

2.
Data Brief ; 36: 107092, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34026986

ABSTRACT

This data article is related to a research paper entitled ``Correlations between spectroscopic data for charge-transfer complexes of two artificial sweeteners, aspartame and neotame, generated with several π-acceptors'' [J. Mol. Liq. 333 (2021) 115904] [1]. Herein we present stoichiometric data of charge-transfer (CT) complexes generated from the interaction between aspartame and neotame with three π-acceptors in methanol solvent at room temperature. The investigated π-acceptors were picric acid (PA), chloranilic acid (CA), and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), where the methods used to determine the stoichiometry of the CT interaction were the spectrophotometric titration method and the Job's continuous variation method.

3.
J Mol Liq ; 335: 116250, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33903781

ABSTRACT

Investigating the chemical properties of molecules used to combat the COVID-19 pandemic is of vital and pressing importance. In continuation of works aimed to explore the charge-transfer chemistry of azithromycin, the antibiotic used worldwide to treat COVID-19, the disease resulting from infection with the novel SARS-CoV-2 virus, in this work, a highly efficient, simple, clean, and eco-friendly protocol was used for the facile synthesis of charge-transfer complexes (CTCs) containing azithromycin and three π-acceptors: 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), and tetrafluoro-1,4-benzoquinone (TFQ). This protocol involves grinding bulk azithromycin as the donor (D) with the investigated acceptors at a 1:1 M ratio at room temperature without any solvent. We found that this protocol is environmentally benign, avoids hazardous organic solvents, and generates the desired CTCs with excellent yield (92-95%) in a straightforward means.

4.
J Mol Liq ; 325: 115121, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33518854

ABSTRACT

Finding a vaccine or cure for the coronavirus disease (COVID-19) responsible for the worldwide pandemic and its economic, medical, and psychological burdens is one of the most pressing issues presently facing the global community. One of the current treatment protocols involves the antibiotic azithromycin (AZM) alone or in combination with other compounds. Obtaining additional insight into the charge-transfer (CT) chemistry of this antibiotic could help researchers and clinicians to improve such treatment protocols. Toward this aim, we investigated the CT interactions between AZM and three π-acceptors: picric acid (PA), chloranilic acid (CLA), and chloranil (CHL) in MeOH solvent. AZM formed colored products at a 1:1 stoichiometry with the acceptors through intermolecular hydrogen bonding. An n â†’ π* interaction was also proposed for the AZM-CHL CT product. The synthesized CT products had markedly different morphologies from the free reactants, exhibiting a semi-crystalline structure composed of spherical particles with diameters ranging from 50 to 90 nm.

5.
J Mol Liq ; 325: 115187, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33390633

ABSTRACT

Around the world, the antibiotic azithromycin (AZM) is currently being used to treat the coronavirus disease (COVID-19) in conjunction with hydroxychloroquine or chloroquine. Investigating the chemical and physical properties of compounds used alone or in combination to combat the COVID-19 pandemic is of vital and pressing importance. The purpose of this study was to characterize the charge transfer (CT) complexation of AZM with iodine in four different solvents: CH2Cl2, CHCl3, CCl4, and C6H5Cl. AZM reacted with iodine at a 1:1 M ratio (AZM to I2) in the CHCl3 solvent and a 1:2 M ratio in the other three solvents, as evidenced by data obtained from an elemental analysis of the solid CT products and spectrophotometric titration and Job's continuous variation method for the soluble CT products. Data obtained from UV-visible and Raman spectroscopies indicated that AZM strongly interacted with iodine in the CH2Cl2, CCl4, and C6H5Cl solvents by a physically potent n→σ* interaction to produce a tri-iodide complex formulated as [AZM·I+]I3 -. XRD and TEM analyses revealed that, in all solvents, the AZM-I2 complex possessed an amorphous structure composed of spherical particles ranging from 80 to 110 nm that tended to aggregate into clusters. The findings described in the present study will hopefully contribute to optimizing the treatment protocols for COVID-19.

6.
J Food Sci Technol ; 56(7): 3374-3379, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31274905

ABSTRACT

A relatively short storage life is considered a major problem for the transportation of strawberries across long distances to markets and for exportation. The aim of this research is to study the combined effects of potassium sorbate and radiation (3 kGy) on the microbial load, shelf life and most of the biochemical constituents such as vitamin C and total soluble solids of strawberries. A potassium sorbate (1%) treatment was combined, in practical application, with irradiation (3 kGy) to extend the shelf life of strawberries. All strawberry samples were stored at 4 ± 1 °C (90-92% RH). Quality assessment of the microbial and biochemical constituents, vitamin C, and TSS during the storage period was performed. The results showed that Gamma irradiation alone at 3 kGy extended the shelf life of strawberries to 21 days. Further extension of the shelf life to 21 days was obtained when irradiation (3 kGy) was combined with potassium sorbate treatment. All treatments caused non-significant decreases in vitamin C content during storage, except for the treatment of strawberries with a solution of potassium sorbate, which caused a significant decrease in the vitamin C content, and a gradual decrease in the vitamin C content occurred with an increase in storage time for all treatments.

7.
Ital J Food Saf ; 7(2): 7242, 2018 07 03.
Article in English | MEDLINE | ID: mdl-30046560

ABSTRACT

In this study, the gross composition and mineral content of Nigella sativa seed powder (NSP) and fatty acid composition of Nigella sativa oil (NSO) were investigated. The ability of NSP, extract (NSE) and NSO in reducing the effects of cisplatin-induced renal toxicity in Sprague-Dawley rats were examined. The obtained results showed that NSP contains high amounts of carbohydrates, protein, and fiber while NSO has higher amounts of linoleicacid, oleic acid, and myristic acid. Rats treated with NSP, NSO, and NSE exhibitedreducedserum levels of urea, creatinine, and potassium, and a significant increase of Na, Na/K, vitamin D, nutritional markers, and antioxidant enzymes compared to the cisplatin-induced renal toxicity group receiving no Nigella sativa seed treatment. This study determined that all powder, oil, and extracts of N. sativa contain potent bioactive components that may aid in treatment against cisplatininduced renal toxicity in rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...