Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34372077

ABSTRACT

Carbon fiber-reinforced polymers are considered a promising composite for many industrial applications including in the automation, renewable energy, and aerospace industries. They exhibit exceptional properties such as a high strength-to-weight ratio and high wear resistance and stiffness, which give them an advantage over other conventional materials such as metals. Various polymers can be used as matrices such as thermosetting, thermoplastic, and elastomers polymers. This comprehensive review focuses on carbon fiber-reinforced thermoplastic polymers due to the advantages of thermoplastic compared to thermosetting and elastomer polymers. These advantages include recyclability, ease of processability, flexibility, and shorter production time. The related properties such as strength, modulus, thermal conductivity, and stability, as well as electrical conductivity, are discussed in depth. Additionally, the modification techniques of the surface of carbon fiber, including the chemical and physical methods, are thoroughly explored. Overall, this review represents and summarizes the future prospective and research developments carried out on carbon fiber-reinforced thermoplastic polymers.

2.
Polymers (Basel) ; 13(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206963

ABSTRACT

The purpose of this study was to assess the ability of titanium Ti(IV) alkyloxy compounds supported by organic polymer polyvinyl chloride (PVC) to polymerize ethylene by feeding triethylaluminium (TEA) as a cocatalyst. Additionally, the impacts of the molar ratio of [Al]/[Ti] on the catalytic activities in ethylene's polymerization and of the comonomer through utilization of diverse quantities of comonomers on a similar or identical activity were studied. The optimal molar ratio of [Al]/[Ti] was 773:1, and the prepared catalyst had an initial activity of up to 2.3 kg PE/mol Ti. h. when the copolymer was incorporated with 64 mmol of 1-octene. The average molecular weight (Mw) of the copolymer produced with the catalysts was between 97 kg/mol and 326 kg/mol. A significant decrease in the Mw was observed, and PDI broadened with increasing concentration of 1-hexene because of the comonomer's stronger chain transfer capacity. The quick deactivation of titanium butoxide Ti(OBu)4 on the polymers was found to be associated with increasing oxidation when supported by the catalyst. The presence of Ti(III) after reduction with the aluminum alkyls cleaves the carbon-chlorine bonds of the polymer, producing an inactive polymeric Ti(IV) complex. The results show that synergistic effects play an important role in enhancing the observed rate of reaction, as illustrated by evidence from scanning electron microscopy (SEM). The diffusion of cocatalysts within catalytic precursor particles may also explain the progression of cobweb structures in the polymer particles.

3.
Materials (Basel) ; 14(2)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466885

ABSTRACT

Our goal is to develop a structural ceramic for high-temperature applications in which silicon carbide-based materials (SiCs) are used as matrix composites. The potential of SiCs to deposit a mixture of SiC and zirconium diboride (ZrB2) plasma spray coating is analyzed. To deposit thermal barrier layers containing up to 50 vol.% SiC, a high-pressure plasma spray (HPPS) process was used. Although the SiC cannot be deposited by thermal spray, a mixture of SiC and zirconium diboride (ZrB2) was deposited because these two compounds form a eutectic phase at a temperature below SiC decomposition. The preference was two different forms, 3 mm and 1 mm, of graphite substrates with different thickness values. A comparison of the morphology of SiC-ZrB2 coatings before and after thermal treatment was performed by applying heat to the surface of a gas torch and traditional furnace between 800 °C and 1200 °C. The growth of the oxide scale was calculated with X-ray diffraction (XRD), scanning electron microscopy (SEM)/energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and density. The oxide scale consists of a SiO2 layer with ZrO2 groups. The findings indicate a greater potential for the studied material in protecting against high-temperature oxidation and in a wide variety of aerospace applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...