Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37959663

ABSTRACT

Efficient compositions for the selective detection of ethanol gas and the removal of organic contaminants were realized by codoping of (Gd, Nb) and (Gd, Mo) ions into TiO2. TiO2, Ti0.96Gd0.01Nb0.03O2, and Ti0.96Gd0.01Mo0.03O2 samples were prepared by a coprecipitation method. For all compositions, a crystalline anatase phase of TiO2 was detected. Compared to pure TiO2, the absorption edges of Ti0.96Gd0.01Nb0.03O2 and Ti0.96Gd0.01Mo0.03O2 samples were red-shifted, further broadening towards visible light. The morphological studies demonstrate that the grains of TiO2 were more refined after (Gd, Nb) and (Gd, Mo) codoping. The photocatalytic efficiency of the Ti0.96Gd0.01Mo0.03O2 catalyst for degrading 20 mg/L reactive yellow 145, brilliant green, and amoxicillin was 98, 95, and 93% in 90 min, respectively. The reusability experiments indicate that the Ti0.96Gd0.01Mo0.03O2 catalyst had high stability during reuse. The high photocatalytic activity of the Ti0.96Gd0.01Mo0.03O2 catalyst was correlated to the broad visible-light absorption and effective separation of electron-hole pairs by Gd3+ and Mo6+ cations. The gas sensing characteristic is reflected by the high sensitivity of the Ti0.96Gd0.01Nb0.03O2 sensor to ethanol gas in the presence of different gases at 275 °C. The obtained results indicated that the (Gd, Mo) mixture could more effectively induce the photocatalytic properties of TiO2 while (Gd, Nb) dopants were the best for reinforcing its sensing characteristics.

2.
Nanomaterials (Basel) ; 13(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37947681

ABSTRACT

The polyacrylamide/gelatin-iron lanthanum oxide (P-G-ILO nanohybrid) was fabricated by the free radical grafting co-polymerization technique in the presence of N,N-methylenebisacrylamide (MBA) as cross linker and ammonium persulfate (APS) as initiator. The P-G-ILO nanohybrid was characterized by the various spectroscopic and microscopic techniques that provided the information regarding the crystalline behavior, surface area, and pore size. The response surface methodology was utilized for the statistical observation of diclofenac (DF) adsorption from the wastewater. The adsorption capacity (qe, mg/g) of P-G-ILO nanohybrid was higher (254, 256, and 258 mg/g) than the ILO nanoparticle (239, 234, and 233 mg/g). The Freundlich isotherm model was the best fitted, as it gives the higher values of correlation coefficient (R2 = 0.982, 0.991 and 0.981) and lower value of standard error of estimate (SEE = 6.30, 4.42 and 6.52), which suggested the multilayered adsorption of DF over the designed P-G-ILO nanohybrid and followed the pseudo second order kinetic model (PSO kinetic model) adsorption. The thermodynamic study reveals that adsorption was spontaneous and endothermic in nature and randomness onto the P-G-ILO nanohybrids surface increases after the DF adsorption. The mechanism of adsorption of DF demonstrated that the adsorption was mainly due to the electrostatic interaction, hydrogen bonding, and dipole interaction. P-G-ILO nanohybrid was reusable for up to five adsorption/desorption cycles.

3.
RSC Adv ; 13(49): 34598-34609, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38024985

ABSTRACT

The development of recyclable photocatalysts with high activity and stability has piqued the interest of researchers in the field of wastewater treatment. In this study, an ultrasonic probe approach was used to immerse a sequence of heterojunctions formed by metal-organic frameworks (UiO-66) and different amounts of molybdenum disulfide quantum dots (MoS2QDs), resulting in a highly recyclable MoS2QDs@UiO-66 photocatalyst. Multiple advanced techniques, such as XPS, XRD, TEM, XRF, and UV-vis spectrophotometry, were used to characterize and confirm the successful preparation of UIO-66 impregnated with MoS2QDs. The results indicated that the best heterostructure catalyst exhibited superior efficiency in the photocatalytic degradation of methylene blue (MB) in water, achieving approximately 99% removal within 30 minutes under simulated sunlight, while approximately 97% removal under visible light. The outstanding photocatalytic performance is predominantly attributed to the photoinduced separation of carriers in this heterostructure system. This study proposes a unique, simple, and low-cost method for improving the degradation performance of organic contaminants in water.

SELECTION OF CITATIONS
SEARCH DETAIL
...