Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Chem ; 109: 108031, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382408

ABSTRACT

The exploration encompassed the synthesis and characterization of two innovative complexes, namely FePHNS and CuPHNS, employing a diverse array of analytical techniques such as elemental analysis, infrared and ultraviolet-visible spectroscopy, mass spectrometry, molar conductivity measurements, magnetic susceptibility assessments, and thermal analysis (TGA). In the spectral domain, infrared spectroscopy substantiated the tridentate ONS coordination of the PHNS ligand to the central metal atom. Thermal analysis offered valuable insights into the distribution and content of water molecules within the complexes. Density functional theory (DFT) calculations were harnessed to validate the molecular structures of both the PHNS ligand and its complex entities, providing an intricate comprehension of their quantum chemical parameters. The investigation extended to an evaluation of the in vitro antibacterial, antifungal, and antioxidant efficacy of the PHNS ligand and its complexes, revealing heightened biological activities for the complexes in comparison to the free PHNS ligand, notably with the CuPHNS complex demonstrating the highest activity, while the PHNS ligand exhibited the lowest. To delve into potential physiological activities, molecular docking studies were conducted, predicting the binding affinity of the compounds to proteins 2vf5 (Glucosamine-6-phosphate synthase in complex with glucosamine-6-phosphate) from Escherichia coli, 3cku (rate oxidase from Aspergillus flavus complexed with its inhibitor 8-azaxanthin and chloride) from Aspergillus flavus, and 5IJT (Crystal structure of Human Peroxiredoxin 2 Oxidized). The ensuing analysis of protein-ligand interactions and binding energies underscored the promising physiological activities of the investigated compounds, warranting further exploration for their potential in novel drug development.

2.
Materials (Basel) ; 17(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38204087

ABSTRACT

A high-entropy Fe30Co20Ni20Mn20Al10 (at%) alloy with a face-centered cubic (FCC) crystalline phase was produced through mechanical alloying. This study examined the development of its phases, microstructure, morphology, and magnetic characteristics. Scanning electron microscopy (SEM) was applied to assess the sample morphology in relation to milling times. The changes that the material underwent during milling were investigated using X-ray diffraction. The milling time affected the phase transformation. A single FCC solid solution (crystallite size = 12 nm) was found after 50 h of milling. Additionally, the magnetic characteristics were examined and shown to be associated with microstructural changes. The powder mixture exhibited behavior consistent with soft magnetics, with an Hc value of 8 Am-1 and an Ms value of 165 emu/g. The excellent soft magnetic characteristic may be related to the stability of the FCC phase, which was generated following a 30 h milling process. In addition, the low value of Ms may have originated from the presence of Al atoms in the solid solution and the development of large densities of interfaces and crystal defects.

SELECTION OF CITATIONS
SEARCH DETAIL
...