Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35163439

ABSTRACT

The presence of protein structures with atypical folds in the Protein Data Bank (PDB) is rare and may result from naturally occurring knots or crystallographic errors. Proper characterisation of such folds is imperative to understanding the basis of naturally existing knots and correcting crystallographic errors. If left uncorrected, such errors can frustrate downstream experiments that depend on the structures containing them. An atypical fold has been identified in P. falciparum dihydrofolate reductase (PfDHFR) between residues 20-51 (loop 1) and residues 191-205 (loop 2). This enzyme is key to drug discovery efforts in the parasite, necessitating a thorough characterisation of these folds. Using multiple sequence alignments (MSA), a unique insert was identified in loop 1 that exacerbates the appearance of the atypical fold-giving it a slipknot-like topology. However, PfDHFR has not been deposited in the knotted proteins database, and processing its structure failed to identify any knots within its folds. The application of protein homology modelling and molecular dynamics simulations on the DHFR domain of P. falciparum and those of two other organisms (E. coli and M. tuberculosis) that were used as molecular replacement templates in solving the PfDHFR structure revealed plausible unentangled or open conformations of these loops. These results will serve as guides for crystallographic experiments to provide further insights into the atypical folds identified.


Subject(s)
Plasmodium falciparum/enzymology , Sequence Alignment/methods , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/genetics , Crystallography, X-Ray , Databases, Protein , Models, Molecular , Molecular Dynamics Simulation , Plasmodium falciparum/genetics , Protein Conformation , Protein Domains , Protein Folding , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Sequence Analysis, Protein , Sequence Homology, Amino Acid
2.
Comput Struct Biotechnol J ; 19: 3938-3953, 2021.
Article in English | MEDLINE | ID: mdl-34234921

ABSTRACT

Viruses often encode proteins that mimic host proteins in order to facilitate infection. Little work has been done to understand the potential mimicry of the SARS-CoV-2, SARS-CoV, and MERS-CoV spike proteins, particularly the receptor-binding motifs, which could be important in determining tropism and druggability of the virus. Peptide and epitope motifs have been detected on coronavirus spike proteins using sequence homology approaches; however, comparing the three-dimensional shape of the protein has been shown as more informative in predicting mimicry than sequence-based comparisons. Here, we use structural bioinformatics software to characterize potential mimicry of the three coronavirus spike protein receptor-binding motifs. We utilize sequence-independent alignment tools to compare structurally known protein models with the receptor-binding motifs and verify potential mimicked interactions with protein docking simulations. Both human and non-human proteins were returned for all three receptor-binding motifs. For example, all three were similar to several proteins containing EGF-like domains: some of which are endogenous to humans, such as thrombomodulin, and others exogenous, such as Plasmodium falciparum MSP-1. Similarity to human proteins may reveal which pathways the spike protein is co-opting, while analogous non-human proteins may indicate shared host interaction partners and overlapping antibody cross-reactivity. These findings can help guide experimental efforts to further understand potential interactions between human and coronavirus proteins.

3.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-34137435

ABSTRACT

Mutations in hallmark genes are believed to be the main drivers of cancer progression. These mutations are reported in the Catalogue of Somatic Mutations in Cancer (COSMIC). Structural appreciation of where these mutations appear, in protein-protein interfaces, active sites or deoxyribonucleic acid (DNA) interfaces, and predicting the impacts of these mutations using a variety of computational tools are crucial for successful drug discovery and development. Currently, there are 723 genes presented in the COSMIC Cancer Gene Census. Due to the complexity of the gene products, structures of only 87 genes have been solved experimentally with structural coverage between 90% and 100%. Here, we present a comprehensive, user-friendly, web interface (https://cancer-3d.com/) of 714 modelled cancer-related genes, including homo-oligomers, hetero-oligomers, transmembrane proteins and complexes with DNA, ribonucleic acid, ligands and co-factors. Using SDM and mCSM software, we have predicted the impacts of reported mutations on protein stability, protein-protein interfaces affinity and protein-nucleic acid complexes affinity. Furthermore, we also predicted intrinsically disordered regions using DISOPRED3.


Subject(s)
Biomarkers, Tumor , Computational Biology/methods , Databases, Genetic , Mutation , Neoplasms/genetics , Oncogenes , Software , Data Analysis , Humans , Models, Molecular , Structure-Activity Relationship , User-Computer Interface , Workflow
4.
Brief Bioinform ; 22(2): 769-780, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33416848

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a rapidly growing infectious disease, widely spread with high mortality rates. Since the release of the SARS-CoV-2 genome sequence in March 2020, there has been an international focus on developing target-based drug discovery, which also requires knowledge of the 3D structure of the proteome. Where there are no experimentally solved structures, our group has created 3D models with coverage of 97.5% and characterized them using state-of-the-art computational approaches. Models of protomers and oligomers, together with predictions of substrate and allosteric binding sites, protein-ligand docking, SARS-CoV-2 protein interactions with human proteins, impacts of mutations, and mapped solved experimental structures are freely available for download. These are implemented in SARS CoV-2 3D, a comprehensive and user-friendly database, available at https://sars3d.com/. This provides essential information for drug discovery, both to evaluate targets and design new potential therapeutics.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/virology , Databases, Protein , Drug Delivery Systems , Proteome , SARS-CoV-2/drug effects , Humans , SARS-CoV-2/isolation & purification
5.
Haematologica ; 106(6): 1693-1704, 2021 06 01.
Article in English | MEDLINE | ID: mdl-32327503

ABSTRACT

Patients diagnosed with Anaplastic Large Cell Lymphoma (ALCL) are still treated with toxic multi-agent chemotherapy and as many as 25-50% of patients relapse. To understand disease pathology and to uncover novel targets for therapy, Whole-Exome Sequencing (WES) of Anaplastic Lymphoma Kinase (ALK)+ ALCL was performed as well as Gene-Set Enrichment Analysis. This revealed that the T-cell receptor (TCR) and Notch pathways were the most enriched in mutations. In particular, variant T349P of NOTCH1, which confers a growth advantage to cells in which it is expressed, was detected in 12% of ALK+ and ALK- ALCL patient samples. Furthermore, we demonstrate that NPM-ALK promotes NOTCH1 expression through binding of STAT3 upstream of NOTCH1. Moreover, inhibition of NOTCH1 with γ-secretase inhibitors (GSIs) or silencing by shRNA leads to apoptosis; co-treatment in vitro with the ALK inhibitor Crizotinib led to additive/synergistic anti-tumour activity suggesting this may be an appropriate combination therapy for future use in the circumvention of ALK inhibitor resistance. Indeed, Crizotinib-resistant and sensitive ALCL were equally sensitive to GSIs. In conclusion, we show a variant in the extracellular domain of NOTCH1 that provides a growth advantage to cells and confirm the suitability of the Notch pathway as a second-line druggable target in ALK+ ALCL.


Subject(s)
Lymphoma, Large-Cell, Anaplastic , Cell Line, Tumor , Humans , Lymphoma, Large-Cell, Anaplastic/drug therapy , Lymphoma, Large-Cell, Anaplastic/genetics , Mutation , Neoplasm Recurrence, Local , Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptor, Notch1/genetics , Exome Sequencing
6.
PLoS One ; 14(7): e0219935, 2019.
Article in English | MEDLINE | ID: mdl-31323058

ABSTRACT

Genomics and genome screening are proving central to the study of cancer. However, a good appreciation of the protein structures coded by cancer genes is also invaluable, especially for the understanding of functions, for assessing ligandability of potential targets, and for designing new drugs. To complement the wealth of information on the genetics of cancer in COSMIC, the most comprehensive database for cancer somatic mutations available, structural information obtained experimentally has been brought together recently in COSMIC-3D. Even where structural information is available for a gene in the Cancer Gene Census, a list of genes in COSMIC with substantial evidence supporting their impacts in cancer, this information is quite often for a single domain in a larger protein or for a single protomer in a multiprotein assembly. Here, we show that over 60% of the genes included in the Cancer Gene Census are predicted to possess multiple domains. Many are also multicomponent and membrane-associated molecular assemblies, with mutations recorded in COSMIC affecting such assemblies. However, only 469 of the gene products have a structure represented in the PDB, and of these only 87 structures have 90-100% coverage over the sequence and 69 have less than 10% coverage. As a first step to bridging gaps in our knowledge in the many cases where individual protein structures and domains are lacking, we discuss our attempts of protein structure modelling using our pipeline and investigating the effects of mutations using two of our in-house methods (SDM2 and mCSM) and identifying potential driver mutations. This allows us to begin to understand the effects of mutations not only on protein stability but also on protein-protein, protein-ligand and protein-nucleic acid interactions. In addition, we consider ways to combine the structural information with the wealth of mutation data available in COSMIC. We discuss the impacts of COSMIC missense mutations on protein structure in order to identify and assess the molecular consequences of cancer-driving mutations.


Subject(s)
Biomarkers, Tumor , Computational Biology , Genomics , Mutation, Missense , Neoplasms/genetics , Computational Biology/methods , Databases, Genetic , Genomics/methods , Humans , Ligands , Models, Molecular , Neoplasms/diagnosis , Oncogene Proteins/chemistry , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Protein Conformation , Structure-Activity Relationship
7.
Comput Struct Biotechnol J ; 17: 378-389, 2019.
Article in English | MEDLINE | ID: mdl-30962868

ABSTRACT

In the cyclic guanosine monophosphate (cGMP) signaling pathway, phosphodiesterase 6 (PDE6) maintains a critical balance of the intracellular concentration of cGMP by catalyzing it to 5' guanosine monophosphate (5'-GMP). To gain insight into the mechanistic impacts of the PDE6 somatic mutations that are implicated in cancer and retinitis pigmentosa, we first defined the structure and organization of the human PDE6 heterodimer using computational comparative modelling. Each subunit of PDE6αß possesses three domains connected through long α-helices. The heterodimer model indicates that the two chains are likely related by a pseudo two-fold axis. The N-terminal region of each subunit is comprised of two allosteric cGMP-binding domains (Gaf-A & Gaf-B), oriented in the same way and interacting with the catalytic domain present at the C-terminal in a way that would allow the allosteric cGMP-binding domains to influence catalytic activity. Subsequently, we applied an integrated knowledge-driven in silico mutation analysis approach to understand the structural and functional implications of experimentally identified mutations that cause various cancers and retinitis pigmentosa, as well as computational saturation mutagenesis of the dimer interface and cGMP-binding residues of both Gaf-A, and the catalytic domains. We studied the impact of mutations on the stability of PDE6αß structure, subunit-interfaces and Gaf-cGMP interactions. Further, we discussed the changes in interatomic interactions of mutations that are destabilizing in Gaf-A (R93L, V141 M, F162 L), catalytic domain (D600N, F742 L, F776 L) and at the dimer interface (F426A, F248G, F424 N). This study establishes a possible link of change in PDE6αß structural stability to the experimentally observed disease phenotypes.

SELECTION OF CITATIONS
SEARCH DETAIL
...