Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(26): 16903-16917, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35754897

ABSTRACT

Concerns over global greenhouse gas emissions such as CO x and NO x as well as the depletion of petroleum fossil resources have motivated humankind to seek an alternative energy source known as green diesel. In this study, green diesel was produced via a deoxygenation (DO) reaction of ceiba oil under a H2-free atmosphere over Ni modified red mud-based catalysts, which have been synthesized via a precipitation - deep-deposition assisted autoclave method. The obtained catalyst was further characterized by XRF, XRD, BET, FTIR, TPD-NH3, FESEM, and TGA. Based on the catalytic activity test, all Ni/RMO x catalysts facilitated greater DO activity by yielding 83-86% hydrocarbon yield and 70-85% saturated diesel n-(C15 + C17) selectivity. Ni/RMO3 was the best catalyst for deoxygenizing the ceiba oil owing to the existence of a high acidic strength (12717.3 µmol g-1) and synergistic interaction between Fe-O and Ni-O species, thereby producing the highest hydrocarbon yield (86%) and n-(C15 + C17) selectivity (85%). According to the reusability study, the Ni/RMO3 could be reused for up to six consecutive runs with hydrocarbon yields ranging from 53% to 83% and n-(C15 + C17) selectivity ranging from 62% to 83%.

SELECTION OF CITATIONS
SEARCH DETAIL
...