Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 132(11)2022 06 01.
Article in English | MEDLINE | ID: mdl-35439173

ABSTRACT

CD13, an ectoenzyme on myeloid and stromal cells, also circulates as a shed, soluble protein (sCD13) with powerful chemoattractant, angiogenic, and arthritogenic properties, which require engagement of a G protein-coupled receptor (GPCR). Here we identify the GPCR that mediates sCD13 arthritogenic actions as the bradykinin receptor B1 (B1R). Immunofluorescence and immunoblotting verified high expression of B1R in rheumatoid arthritis (RA) synovial tissue and fibroblast-like synoviocytes (FLSs), and demonstrated binding of sCD13 to B1R. Chemotaxis, and phosphorylation of Erk1/2, induced by sCD13, were inhibited by B1R antagonists. In ex vivo RA synovial tissue organ cultures, a B1R antagonist reduced secretion of inflammatory cytokines. Several mouse arthritis models, including serum transfer, antigen-induced, and local innate immune stimulation arthritis models, were attenuated in Cd13-/- and B1R-/- mice and were alleviated by B1R antagonism. These results establish a CD13/B1R axis in the pathogenesis of inflammatory arthritis and identify B1R as a compelling therapeutic target in RA and potentially other inflammatory diseases.


Subject(s)
Arthritis, Rheumatoid , CD13 Antigens/metabolism , Synoviocytes , Animals , Arthritis, Rheumatoid/pathology , Bradykinin/metabolism , Bradykinin/pharmacology , Disease Models, Animal , Fibroblasts/metabolism , Mice , Receptor, Bradykinin B1/genetics , Receptor, Bradykinin B1/metabolism , Receptors, G-Protein-Coupled/metabolism , Synovial Membrane/pathology , Synoviocytes/metabolism
2.
Neuropharmacology ; 47(1): 46-64, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15165833

ABSTRACT

Willardiine derivatives with an N3-benzyl substituent bearing an acidic group have been synthesized with the aim of producing selective antagonists for GLUK5-containing kainate receptors. UBP296 was found to be a potent and selective antagonist of native GLUK5-containing kainate receptors in the spinal cord, with activity residing in the S enantiomer (UBP302). In cells expressing human kainate receptor subunits, UBP296 selectively depressed glutamate-induced calcium influx in cells containing GLUK5 in homomeric or heteromeric forms. In radioligand displacement binding studies, the willardiine analogues displaced [3H]kainate binding with IC50 values >100 microM at rat GLUK6, GLUK2 or GLUK6/GLUK2. An explanation of the GLUK5 selectivity of UBP296 was obtained using homology models of the antagonist bound forms of GLUK5 and GLUK6. In rat hippocampal slices, UBP296 reversibly blocked ATPA-induced depressions of synaptic transmission at concentrations subthreshold for affecting AMPA receptor-mediated synaptic transmission directly. UBP296 also completely blocked the induction of mossy fibre LTP, in medium containing 2 mM (but not 4 mM) Ca2+. These data provide further evidence for a role for GLUK5-containing kainate receptors in mossy fibre LTP. In conclusion, UBP296 is the most potent and selective antagonist of GLUK5-containing kainate receptors so far described.


Subject(s)
Methoxyhydroxyphenylglycol/analogs & derivatives , Nerve Fibers/physiology , Receptors, Kainic Acid/antagonists & inhibitors , Spinal Nerve Roots/physiology , Alanine/analogs & derivatives , Alanine/chemical synthesis , Alanine/pharmacology , Animals , Animals, Newborn , Cell Line , Female , Humans , Kainic Acid/pharmacology , Kinetics , Male , Methoxyhydroxyphenylglycol/pharmacology , N-Methylaspartate/pharmacology , Nerve Fibers/drug effects , Protein Subunits/drug effects , Protein Subunits/physiology , Rats , Rats, Wistar , Receptors, Glutamate/drug effects , Receptors, Glutamate/physiology , Spinal Nerve Roots/drug effects , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...