Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; 107(2): 319-328, 2020 02.
Article in English | MEDLINE | ID: mdl-32002983

ABSTRACT

PREMISE: In the complex soil nutrient environments of wild populations of annual plants, in general, low nutrient availability restricts growth and alters root-shoot relationships. However, our knowledge of natural selection on roots in field settings is limited. We sought to determine whether selection acts directly on root traits and to identify which components of the soil environment were potential agents of selection. METHODS: We studied wild native populations of Arabidopsis thaliana across 4 years, measuring aboveground and belowground traits and analyzing soil nutrients. Using multivariate methods, we examined patterns of natural selection and identified soil attributes that contributed to whole-plant form. In a common garden experiment at two field sites with contrasting soil texture, we examined patterns of selection on root and shoot traits. RESULTS: In wild populations, we uncovered selection for above- and belowground size and architectural traits. We detected variation through time and identified soil components that influenced fruit production. In the garden experiment, we detected a distinct positive selection for total root length at the site with greater water-holding capacity and negative selection for measures of root architecture at the field site with reduced nutrient availability and water holding capacity. CONCLUSIONS: Patterns of natural selection on belowground traits varied through time, across field sites and experimental gardens. Simultaneous investigations of above- and belowground traits reveal trait functional relationships on which natural selection can act, highlighting the influence of edaphic features on evolutionary processes in wild annual plant populations.


Subject(s)
Arabidopsis , Soil , Nutrients , Phenotype , Plant Roots
2.
Ecology ; 95(6): 1651-62, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25039229

ABSTRACT

It has been challenging to establish the mechanisms that link ecosystem functioning to environmental and resource variation, as well as community structure, composition, and compensatory dynamics. A compelling hypothesis of compensatory dynamics, known as "zero-sum" dynamics, is framed in terms of energy resource and demand units, where there is an inverse link between the number of individuals in a community and the mean individual metabolic rate. However, body size energy distributions that are nonuniform suggest a niche advantage at a particular size class, which suggests a limit to which metabolism can explain community structuring. Since 1989, the composition and structure of abyssal seafloor communities in the northeast Pacific and northeast Atlantic have varied interannually with links to climate and resource variation. Here, for the first time, class and mass-specific individual respiration rates were examined along with resource supply and time series of density and biomass data of the dominant abyssal megafauna, echinoderms. Both sites had inverse relationships between density and mean individual metabolic rate. We found fourfold variation in echinoderm respiration over interannual timescales at both sites, which were linked to shifts in species composition and structure. In the northeastern Pacific, the respiration of mobile surface deposit feeding echinoderms was positively linked to climate-driven particulate organic carbon fluxes with a temporal lag of about one year, respiring - 1-6% of the annual particulate organic carbon flux.


Subject(s)
Echinodermata/physiology , Ecosystem , Oxygen Consumption/physiology , Animals , Atlantic Ocean , Models, Biological , Pacific Ocean , Population Dynamics , Time Factors
3.
PLoS One ; 9(4): e95839, 2014.
Article in English | MEDLINE | ID: mdl-24788771

ABSTRACT

Anthropogenic litter is present in all marine habitats, from beaches to the most remote points in the oceans. On the seafloor, marine litter, particularly plastic, can accumulate in high densities with deleterious consequences for its inhabitants. Yet, because of the high cost involved with sampling the seafloor, no large-scale assessment of distribution patterns was available to date. Here, we present data on litter distribution and density collected during 588 video and trawl surveys across 32 sites in European waters. We found litter to be present in the deepest areas and at locations as remote from land as the Charlie-Gibbs Fracture Zone across the Mid-Atlantic Ridge. The highest litter density occurs in submarine canyons, whilst the lowest density can be found on continental shelves and on ocean ridges. Plastic was the most prevalent litter item found on the seafloor. Litter from fishing activities (derelict fishing lines and nets) was particularly common on seamounts, banks, mounds and ocean ridges. Our results highlight the extent of the problem and the need for action to prevent increasing accumulation of litter in marine environments.


Subject(s)
Seawater , Water Pollutants , Europe
4.
PLoS One ; 8(5): e61550, 2013.
Article in English | MEDLINE | ID: mdl-23658696

ABSTRACT

In contrast to generally sparse biological communities in open-ocean settings, seamounts and ridges are perceived as areas of elevated productivity and biodiversity capable of supporting commercial fisheries. We investigated the origin of this apparent biological enhancement over a segment of the North Mid-Atlantic Ridge (MAR) using sonar, corers, trawls, traps, and a remotely operated vehicle to survey habitat, biomass, and biodiversity. Satellite remote sensing provided information on flow patterns, thermal fronts, and primary production, while sediment traps measured export flux during 2007-2010. The MAR, 3,704,404 km(2) in area, accounts for 44.7% lower bathyal habitat (800-3500 m depth) in the North Atlantic and is dominated by fine soft sediment substrate (95% of area) on a series of flat terraces with intervening slopes either side of the ridge axis contributing to habitat heterogeneity. The MAR fauna comprises mainly species known from continental margins with no evidence of greater biodiversity. Primary production and export flux over the MAR were not enhanced compared with a nearby reference station over the Porcupine Abyssal Plain. Biomasses of benthic macrofauna and megafauna were similar to global averages at the same depths totalling an estimated 258.9 kt C over the entire lower bathyal north MAR. A hypothetical flat plain at 3500 m depth in place of the MAR would contain 85.6 kt C, implying an increase of 173.3 kt C attributable to the presence of the Ridge. This is approximately equal to 167 kt C of estimated pelagic biomass displaced by the volume of the MAR. There is no enhancement of biological productivity over the MAR; oceanic bathypelagic species are replaced by benthic fauna otherwise unable to survive in the mid ocean. We propose that globally sea floor elevation has no effect on deep sea biomass; pelagic plus benthic biomass is constant within a given surface productivity regime.


Subject(s)
Biodiversity , Biomass , Animals , Atlantic Ocean , Biota , Ecosystem , Seawater/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...