Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(12): e32807, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975177

ABSTRACT

Plasmalogens are glycerophospholipids with a vinyl ether bond, rather than an ester bond, at sn-1 position. These lipids were described in anaerobic bacteria, myxobacteria, animals and some protists, but not in plants or fungi. Anaerobic and aerobic organisms synthesize plasmalogens differently. The aerobic pathway requires oxygen in the last step, which is catalyzed by PEDS1. CarF and TMEM189 were recently identified as the PEDS1 from myxobacteria and mammals, which could be of valuable use in exploring the distribution of this pathway in eukaryotes. We show the presence of plasmalogens in Capsaspora owczarzaki, one of the closest unicellular relatives of animals. This is the first report of plasmalogens in non-metazoan opisthokontas. Analysis of its genome revealed the presence of enzymes of the aerobic pathway. In a broad BLAST search, we found PEDS1 homologs in Opisthokonta and some genera of Amoebozoa and Excavata, consistent with the restricted distribution of plasmalogens reported in eukaryotes. Within Opisthokonta, PEDS1 is limited to Filasterea (Capsaspora and Pigoraptor), Metazoa and a small group of fungi comprising three genera of ascomycetes. A phylogenetic analysis of PEDS1 traced the acquisition of plasmalogen synthesis in animals to a filasterean ancestor and suggested independent acquisition events for Amoebozoa, Excavata and Ascomycetes.

2.
PNAS Nexus ; 1(4): pgac134, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36082236

ABSTRACT

All cells must increase their volumes in response to biomass growth to maintain intracellular mass density within physiologically permissive bounds. Here, we investigate the regulation of volume growth in the Gram-positive bacterium Bacillus subtilis. To increase volume, bacteria enzymatically expand their cell envelopes and insert new envelope material. First, we demonstrate that cell-volume growth is determined indirectly, by expanding their envelopes in proportion to mass growth, similarly to the Gram-negative Escherichia coli, despite their fundamentally different envelope structures. Next, we studied, which pathways might be responsible for robust surface-to-mass coupling: We found that both peptidoglycan synthesis and membrane synthesis are required for proper surface-to-mass coupling. However, surprisingly, neither pathway is solely rate-limiting, contrary to wide-spread belief, since envelope growth continues at a reduced rate upon complete inhibition of either process. To arrest cell-envelope growth completely, the simultaneous inhibition of both envelope-synthesis processes is required. Thus, we suggest that multiple envelope-synthesis pathways collectively confer an important aspect of volume regulation, the coordination between surface growth, and biomass growth.

3.
Sci Total Environ ; 774: 145761, 2021 Jun 20.
Article in English | MEDLINE | ID: mdl-33610979

ABSTRACT

Glyphosate is a synthetic phosphonate compound characterized by a carbon­phosphorus bond. Glyphosate based herbicides (GBH) are widely distributed in most of the economically productive lands in which crop production is mainly based on glyphosate-resistant genetically modified plants. Naturally, glyphosate is remediated by soil microorganisms, which accelerate its degradation. Technology based on microorganisms is considered highly efficient, low-cost and eco-friendly to remediate contaminated environments, denoting the importance of characterizing new bacterial strains able to degrade glyphosate to perform its bioremediation. In this work, 13 different bacterial strains able to grow in GBH as only phosphorous source were isolated from different environmental samples from the Argentine vastly productive glyphosate-resistant soybean crop area. These strains were identified and they belong to the genera Acinetobacter, Achromobacter, Agrobacterium, Ochrobactrum, Pantoea and Pseudomonas. Their ability to grow and consume GBH, glyphosate or the aminomethylphosphonic acid (AMPA), another phosphonate derived from glyphosate degradation, was evaluated. The best degradation performance was observed for bacteria from the genera Achromobacter, Agrobacterium and Ochrobactrum. The genome of the highly efficient GBH degrader Agrobacterium tumefaciens CHLDO was sequenced revealing the presence of a phn cluster, responsible for phosphonate metabolization. Expression analysis of A. tumefaciens CHLDO phn genes in the presence of 1.5 mM GBH compared to inorganic phosphorous showed that most of them are highly expressed during growth in the presence of the herbicide, suggesting a strong participation of phn cluster in GBH degradation. The importance of discovering new bacterial strains and the value of deciphering molecular determinants of GBH degradation give promising tools for bioremediation techniques to be used in glyphosate-contaminated environments is discussed.


Subject(s)
Glycine , Herbicides , Biodegradation, Environmental , Glycine/analogs & derivatives , Organophosphonates , Glyphosate
4.
Sci Rep ; 9(1): 2158, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30770847

ABSTRACT

Brucella species are Gram-negative, facultative intracellular pathogens responsible for a worldwide zoonosis. The envelope of Brucella exhibits unique characteristics that make these bacteria furtive pathogens and resistant to several host defence compounds. We have identified a Brucella suis gene (mapB) that appeared to be crucial for cell envelope integrity. Indeed, the typical resistance of Brucella to both lysozyme and the cationic lipopeptide polymyxin B was markedly reduced in a ∆mapB mutant. MapB turned out to represent a TamB orthologue. This last protein, together with TamA, a protein belonging to the Omp85 family, form a complex that has been proposed to participate in the translocation of autotransporter proteins across the outer membrane (OM). Accordingly, we observed that MapB is required for proper assembly of an autotransporter adhesin in the OM, as most of the autotransporter accumulated in the mutant cell periplasm. Both assessment of the relative amounts of other specific outer membrane proteins (OMPs) and a proteome approach indicated that the absence of MapB did not lead to an extensive alteration in OMP abundance, but to a reduction in the relative amounts of a protein subset, including proteins from the Omp25/31 family. Electron microscopy revealed that ∆mapB cells exhibit multiple anomalies in cell morphology, indicating that the absence of the TamB homologue in B. suis severely affects cell division. Finally, ∆mapB cells were impaired in macrophage infection and showed an attenuated virulence phenotype in the mouse model. Collectively, our results indicate that the role of B. suis TamB homologue is not restricted to participating in the translocation of autotransporters across the OM but that it is essential for OM stability and protein composition and that it is involved in cell envelope biogenesis, a process that is inherently coordinated with cell division.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Brucella suis/growth & development , Cell Division , Cell Membrane/metabolism , Cell Wall/metabolism , Virulence Factors/metabolism , Animals , Bacterial Outer Membrane Proteins/genetics , Brucella suis/genetics , Brucella suis/metabolism , Brucella suis/ultrastructure , Brucellosis/microbiology , Brucellosis/pathology , Cell Line , Disease Models, Animal , Gene Deletion , Macrophages/microbiology , Mice , Microscopy, Electron, Transmission , Virulence , Virulence Factors/genetics
5.
FEBS J ; 285(23): 4494-4511, 2018 12.
Article in English | MEDLINE | ID: mdl-30300504

ABSTRACT

Iterative type I polyketide synthases (PKS) are megaenzymes essential to the biosynthesis of an enormously diverse array of bioactive natural products. Each PKS contains minimally three functional domains, ß-ketosynthase (KS), acyltransferase (AT), and acyl carrier protein (ACP), and a subset of reducing domains such as ketoreductase (KR), dehydratase (DH), and enoylreductase (ER). The substrate selection, condensation reactions, and ß-keto processing of the polyketide growing chain are highly controlled in a programmed manner. However, the structural features and mechanistic rules that orchestrate the iterative cycles, processing domains functionality, and chain termination in this kind of megaenzymes are often poorly understood. Here, we present a biochemical and functional characterization of the KS and the AT domains of a PKS from the mallard duck Anas platyrhynchos (ApPKS). ApPKS belongs to an animal PKS family phylogenetically more related to bacterial PKS than to metazoan fatty acid synthases. Through the dissection of the ApPKS enzyme into mono- to didomain fragments and its reconstitution in vitro, we determined its substrate specificity toward different starters and extender units. ApPKS AT domain can effectively transfer acetyl-CoA and malonyl-CoA to the ApPKS ACP stand-alone domain. Furthermore, the KS and KR domains, in the presence of Escherichia coli ACP, acetyl-CoA, and malonyl-CoA, showed the ability to catalyze the chain elongation and the ß-keto reduction steps necessary to yield a 3-hydroxybutyryl-ACP derivate. These results provide new insights into the catalytic efficiency and specificity of this uncharacterized family of PKSs.


Subject(s)
Acetyl Coenzyme A/metabolism , Malonyl Coenzyme A/metabolism , Polyketide Synthases/metabolism , Acylation , Animals , Catalytic Domain , Ducks , Kinetics , Phylogeny , Polyketide Synthases/chemistry , Polyketide Synthases/genetics , Protein Domains , Substrate Specificity
6.
J Lipid Res ; 59(10): 1871-1879, 2018 10.
Article in English | MEDLINE | ID: mdl-30087203

ABSTRACT

Little is known about the structure-function relationship of membrane-bound lipid desaturases. Using a domain-swapping strategy, we found that the N terminus (comprising the two first transmembrane segments) region of Bacillus cereus DesA desaturase improves Bacillus subtilis Des activity. In addition, the replacement of the first two transmembrane domains from Bacillus licheniformis inactive open reading frame (ORF) BL02692 with the corresponding domain from DesA was sufficient to resurrect this enzyme. Unexpectedly, we were able to restore the activity of ORF BL02692 with a single substitution (Cys40Tyr) of a cysteine localized in the first transmembrane domain close to the lipid-water interface. Substitution of eight residues (Gly90, Trp104, Lys172, His228, Pro257, Leu275, Tyr282, and Leu284) by site-directed mutagenesis produced inactive variants of DesA. Homology modeling of DesA revealed that His228 is part of the metal binding center, together with the canonical His boxes. Trp104 shapes the hydrophobic tunnel, whereas Gly90 and Lys172 are probably involved in substrate binding/recognition. Pro257, Leu275, Tyr282, and Leu284 might be relevant for the structural arrangement of the active site or interaction with electron donors. This study reveals the role of the N-terminal region of Δ5 phospholipid desaturases and the individual residues necessary for the activity of this class of enzymes.


Subject(s)
Fatty Acid Desaturases/chemistry , Fatty Acid Desaturases/metabolism , Amino Acid Sequence , Bacillus subtilis/enzymology , Cell Membrane/metabolism , Fatty Acid Desaturases/genetics , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Open Reading Frames/genetics , Protein Domains , Sequence Homology, Amino Acid
7.
Sci Rep ; 8(1): 6398, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29686301

ABSTRACT

Proper cholesterol transport is crucial for the functionality of cells. In C. elegans, certain cholesterol derivatives called dafachronic acids (DAs) govern the entry into diapause. In their absence, worms form a developmentally arrested dauer larva. Thus, cholesterol transport to appropriate places for DA biosynthesis warrants the reproductive growth. Recently, we discovered a novel class of glycosphingolipids, PEGCs, required for cholesterol mobilization/transport from internal storage pools. Here, we identify other components involved in this process. We found that strains lacking polyunsaturated fatty acids (PUFAs) undergo increased dauer arrest when grown without cholesterol. This correlates with the depletion of the PUFA-derived endocannabinoids 2-arachidonoyl glycerol and anandamide. Feeding of these endocannabinoids inhibits dauer formation caused by PUFAs deficiency or impaired cholesterol trafficking (e.g. in Niemann-Pick C1 or DAF-7/TGF-ß mutants). Moreover, in parallel to PEGCs, endocannabinoids abolish the arrest induced by cholesterol depletion. These findings reveal an unsuspected function of endocannabinoids in cholesterol trafficking regulation.


Subject(s)
Caenorhabditis elegans/metabolism , Cholesterol/metabolism , Endocannabinoids/metabolism , Homeostasis , Animals , Arachidonic Acid/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Fatty Acids, Unsaturated/metabolism , Larva/metabolism , Mutation
8.
J Infect Dis ; 217(8): 1257-1266, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29325043

ABSTRACT

Brucellaceae are stealthy pathogens with the ability to survive and replicate in the host in the context of a strong immune response. This capacity relies on several virulence factors that are able to modulate the immune system and in their structural components that have low proinflammatory activities. Lipopolysaccharide (LPS), the main component of the outer membrane, is a central virulence factor of Brucella, and it has been well established that it induces a low inflammatory response. We describe here the identification and characterization of a novel periplasmic protein (RomA) conserved in alpha-proteobacteria, which is involved in the homeostasis of the outer membrane. A mutant in this gene showed several phenotypes, such as membrane defects, altered LPS composition, reduced adhesion, and increased virulence and inflammation. We show that RomA is involved in the synthesis of LPS, probably coordinating part of the biosynthetic complex in the periplasm. Its absence alters the normal synthesis of this macromolecule and affects the homeostasis of the outer membrane, resulting in a strain with a hyperinflammatory phenotype. Our results suggest that the proper synthesis of LPS is central to maximize virulence and minimize inflammation.


Subject(s)
Bacterial Proteins/physiology , Brucella/metabolism , Brucellosis/microbiology , Lipopolysaccharides/biosynthesis , Animals , Brucella/pathogenicity , Gentamicins , Inflammation/metabolism , Mice , Protein Transport , Virulence
9.
J Bacteriol ; 199(10)2017 05 15.
Article in English | MEDLINE | ID: mdl-28289081

ABSTRACT

Light sensing in chemotrophic bacteria has been relatively recently ascertained. In the human pathogen Acinetobacter baumannii, light modulates motility, biofilm formation, and virulence through the blue-light-sensing-using flavin (BLUF) photoreceptor BlsA. In addition, light can induce a reduction in susceptibility to certain antibiotics, such as minocycline and tigecycline, in a photoreceptor-independent manner. In this work, we identified new traits whose expression levels are modulated by light in this pathogen, which comprise not only important determinants related to pathogenicity and antibiotic resistance but also metabolic pathways, which represents a novel concept for chemotrophic bacteria. Indeed, the phenylacetic acid catabolic pathway and trehalose biosynthesis were modulated by light, responses that completely depend on BlsA. We further show that tolerance to some antibiotics and modulation of antioxidant enzyme levels are also influenced by light, likely contributing to bacterial persistence in adverse environments. Also, we present evidence indicating that surfactant production is modulated by light. Finally, the expression of whole pathways and gene clusters, such as genes involved in lipid metabolism and genes encoding components of the type VI secretion system, as well as efflux pumps related to antibiotic resistance, was differentially induced by light. Overall, our results indicate that light modulates global features of the A. baumannii lifestyle.IMPORTANCE The discovery that nonphototrophic bacteria respond to light constituted a novel concept in microbiology. In this context, we demonstrated that light could modulate aspects related to bacterial virulence, persistence, and resistance to antibiotics in the human pathogen Acinetobacter baumannii In this work, we present the novel finding that light directly regulates metabolism in this chemotrophic bacterium. Insights into the mechanism show the involvement of the photoreceptor BlsA. In addition, tolerance to antibiotics and catalase levels are also influenced by light, likely contributing to bacterial persistence in adverse environments, as is the expression of the type VI secretion system and efflux pumps. Overall, a profound influence of light on the lifestyle of A. baumannii is suggested to occur.


Subject(s)
Acinetobacter baumannii/physiology , Acinetobacter baumannii/radiation effects , Light , Metabolic Networks and Pathways/radiation effects , Antioxidants/metabolism , Lipid Metabolism/radiation effects , Phenylacetates/metabolism , Surface-Active Agents/metabolism , Trehalose/biosynthesis , Type VI Secretion Systems/radiation effects
10.
FEBS J ; 281(10): 2324-38, 2014 May.
Article in English | MEDLINE | ID: mdl-24641521

ABSTRACT

UNLABELLED: Cerulenin is a fungal toxin that inhibits both eukaryotic and prokaryotic ketoacyl-acyl carrier protein synthases or condensing enzymes. It has been used experimentally to treat cancer and obesity, and is a potent inhibitor of bacterial growth. Understanding the molecular mechanisms of resistance to cerulenin and similar compounds is thus highly relevant for human health. We have previously described a Bacillus subtilis cerulenin-resistant strain, expressing a point-mutated condensing enzyme FabF (FabF[I108F]) (i.e. FabF with isoleucine 108 substituted by phenylalanine). We now report the crystal structures of wild-type FabF from B. subtilis, both alone and in complex with cerulenin, as well as of the FabF[I108F] mutant protein. The three-dimensional structure of FabF[I108F] constitutes the first atomic model of a condensing enzyme that remains active in the presence of the inhibitor. Soaking the mycotoxin into preformed wild-type FabF crystals allowed for noncovalent binding into its specific pocket within the FabF core. Interestingly, only co-crystallization experiments allowed us to trap the covalent complex. Our structure shows that the covalent bond between Cys163 and cerulenin, in contrast to that previously proposed, implicates carbon C3 of the inhibitor. The similarities between Escherichia coli and B. subtilis FabF structures did not explain the reported inability of ecFabF[I108F] (i.e. FabF from Escherichia coli with isoleucine 108 substituted by phenylalanine) to elongate medium and long-chain acyl-ACPs. We now demonstrate that the E. coli modified enzyme efficiently catalyzes the synthesis of medium and long-chain ketoacyl-ACPs. We also characterized another cerulenin-insensitive form of FabF, conferring a different phenotype in B. subtilis. The structural, biochemical and physiological data presented, shed light on the mechanisms of FabF catalysis and resistance to cerulenin. DATABASE: Crystallographic data (including atomic coordinates and structure factors) have been deposited in the Protein Data Bank under accession codes 4LS5, 4LS6, 4LS7 and 4LS8.


Subject(s)
Bacillus subtilis/drug effects , Bacillus subtilis/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cerulenin/pharmacology , Fatty Acid Synthase, Type II/chemistry , Fatty Acid Synthase, Type II/metabolism , Acetyltransferases/chemistry , Acetyltransferases/genetics , Acetyltransferases/metabolism , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Catalytic Domain/genetics , Crystallography, X-Ray , Drug Resistance, Bacterial/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fatty Acid Synthase, Type II/genetics , Fatty Acid Synthesis Inhibitors/pharmacology , Genes, Bacterial , Humans , Models, Molecular , Mycotoxins/pharmacology , Point Mutation , Protein Structure, Quaternary , Static Electricity
11.
Microbiologyopen ; 3(2): 213-24, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24574048

ABSTRACT

Bacillus subtilis responds to a sudden decrease in temperature by transiently inducing the expression of the des gene encoding for a lipid desaturase, Δ5-Des, which introduces a double bond into the acyl chain of preexisting membrane phospholipids. This Δ5-Des-mediated membrane remodeling is controlled by the cold-sensor DesK. After cooling, DesK activates the response regulator DesR, which induces transcription of des. We show that inhibition of fatty acid synthesis by the addition of cerulenin, a potent and specific inhibitor of the type II fatty acid synthase, results in increased levels of short-chain fatty acids (FA) in membrane phospholipids that lead to inhibition of the transmembrane-input thermal control of DesK. Furthermore, reduction of phospholipid synthesis by conditional inactivation of the PlsC acyltransferase causes significantly elevated incorporation of long-chain FA and constitutive upregulation of the des gene. Thus, we provide in vivo evidence that the thickness of the hydrophobic core of the lipid bilayer serves as one of the stimulus sensed by the membrane spanning region of DesK.


Subject(s)
Bacillus subtilis/drug effects , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Cerulenin/metabolism , Fatty Acids, Unsaturated/biosynthesis , Membrane Proteins/metabolism , Bacillus subtilis/radiation effects , Cell Membrane/metabolism , Cold Temperature , Fatty Acid Desaturases/metabolism , Signal Transduction
12.
Appl Environ Microbiol ; 79(20): 6271-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23913431

ABSTRACT

At low temperatures, Bacillus cereus synthesizes large amounts of unsaturated fatty acids (UFAs) with double bonds in positions Δ5 and Δ10, as well as Δ5,10 diunsaturated fatty acids. Through sequence homology searches, we identified two open reading frames (ORFs) encoding a putative Δ5 desaturase and a fatty acid acyl-lipid desaturase in the B. cereus ATCC 14579 genome, and these were named BC2983 and BC0400, respectively. Functional characterization of ORFs BC2983 and BC0400 by means of heterologous expression in Bacillus subtilis confirmed that they both encode acyl-lipid desaturases that use phospholipids as the substrates and have Δ5 and Δ10 desaturase activities. Thus, these ORFs were correspondingly named desA (Δ5 desaturase) and desB (Δ10 desaturase). We established that DesA utilizes ferredoxin and flavodoxins (Flds) as electron donors for the desaturation reaction, while DesB preferably employs Flds. In addition, increased amounts of UFAs were found when B. subtilis expressing B. cereus desaturases was subjected to a cold shock treatment, indicating that the activity or the expression of these enzymes is upregulated in response to a decrease in growth temperature. This represents the first work reporting the functional characterization of fatty acid desaturases from B. cereus.


Subject(s)
Bacillus cereus/enzymology , Bacillus cereus/metabolism , Fatty Acid Desaturases/metabolism , Fatty Acids, Unsaturated/biosynthesis , Bacillus cereus/genetics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Cloning, Molecular , Fatty Acid Desaturases/genetics , Ferredoxins/metabolism , Flavodoxin/metabolism , Gene Expression , Oxidation-Reduction
13.
Biochem Biophys Res Commun ; 412(2): 286-90, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21820408

ABSTRACT

Trypanosoma brucei, the etiologic agent of sleeping sickness, is exposed to important changes in nutrients and temperature during its life cycle. To adapt to these changes, the fluidity of its membranes plays a crucial role. This fluidity, mediated by the fatty-acid composition, is regulated by enzymes named desaturases. We have previously shown that the oleoyl desaturase is essential for Trypanosoma cruzi and T. brucei. In this work, we present experimental support for the relevance of stearoyl-CoA desaturase (SCD) for T. brucei's survival, in both its insect or procyclic-form (PCF) and bloodstream-form (BSF) stages. We evaluated this essentiality in two different ways: by generating a SCD knocked-down parasite line using RNA interference, and by chemical inhibition of the enzyme with two compounds, Isoxyl and a thiastearate with the sulfur atom at position 10 (10-TS). The effective concentration for 50% growth inhibition (EC(50)) of PCF was 1.0 ± 0.2 µM for Isoxyl and 5 ± 2 µM for 10-TS, whereas BSF appeared more susceptible with EC(50) values 0.10 ± 0.03 µM (Isoxyl) and 1.0 ± 0.6 µM (10-TS). RNA interference showed to be deleterious for both stages of the parasite. In addition, T. brucei-infected mice were fed with Isoxyl, causing a reduction of the parasitemia and an increase of the rodents' survival.


Subject(s)
Parasitemia/microbiology , Stearoyl-CoA Desaturase/metabolism , Trypanosoma brucei brucei/enzymology , Trypanosomiasis, African/microbiology , Animals , Female , Gene Knockdown Techniques , Mice , Parasitemia/drug therapy , Phenylthiourea/analogs & derivatives , Phenylthiourea/therapeutic use , RNA Interference , Stearoyl-CoA Desaturase/genetics , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/genetics , Trypanosomiasis, African/drug therapy
14.
J Bacteriol ; 193(16): 4043-8, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21665975

ABSTRACT

The Bacillus subtilis acyl lipid desaturase (Δ5-Des) is an iron-dependent integral membrane protein able to selectively introduce double bonds into long-chain fatty acids. In the last decade since its discovery, the molecular mechanism of Δ5-Des expression has been studied extensively. However, the mechanism of desaturation, which must rely on unknown bacterial proteins for electron transfer, has not yet been explored. The B. subtilis genome encodes three proteins that can act as potential electron donors of Δ5-Des, ferredoxin (Fer) and two flavodoxins (Flds) (YkuN and YkuP), which are encoded by the ykuNOP operon. Here we report that the disruption of either the fer gene or the ykuNOP operon decreases the desaturation of palmitic acid by ∼30%. Nevertheless, a fer ykuNOP mutant abolished the desaturation reaction almost completely. Our results establish Fer and the two Flds as redox partners for Δ5-Des and suggest that the Fer and Fld proteins could function physiologically in the biosynthesis of unsaturated fatty acids in B. subtilis. Although Flds have extensively been described as partners in a number of redox processes, this is the first report describing their role as electron donors in the fatty acid desaturation reaction.


Subject(s)
Bacillus subtilis/metabolism , Fatty Acid Desaturases/metabolism , Fatty Acids/metabolism , Ferredoxins/metabolism , Flavodoxin/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Mutation
15.
PLoS One ; 5(12): e14239, 2010 Dec 06.
Article in English | MEDLINE | ID: mdl-21151902

ABSTRACT

BACKGROUND: Trypanosomes can synthesize polyunsaturated fatty acids. Previously, we have shown that they possess stearoyl-CoA desaturase (SCD) and oleate desaturase (OD) to convert stearate (C18) into oleate (C18:1) and linoleate (C18:2), respectively. Here we examine if OD is essential to these parasites. METHODOLOGY: Cultured procyclic (insect-stage) form (PCF) and bloodstream-form (BSF) Trypanosoma brucei cells were treated with 12- and 13-thiastearic acid (12-TS and 13-TS), inhibitors of OD, and the expression of the enzyme was knocked down by RNA interference. The phenotype of these cells was studied. PRINCIPAL FINDINGS: Growth of PCF T. brucei was totally inhibited by 100 µM of 12-TS and 13-TS, with EC(50) values of 40±2 and 30±2 µM, respectively. The BSF was more sensitive, with EC(50) values of 7±3 and 2±1 µM, respectively. This growth phenotype was due to the inhibitory effect of thiastearates on OD and, to a lesser extent, on SCD. The enzyme inhibition caused a drop in total unsaturated fatty-acid level of the cells, with a slight increase in oleate but a drastic decrease in linoleate level, most probably affecting membrane fluidity. After knocking down OD expression in PCF, the linoleate content was notably reduced, whereas that of oleate drastically increased, maintaining the total unsaturated fatty-acid level unchanged. Interestingly, the growth phenotype of the RNAi-induced cells was similar to that found for thiastearate-treated trypanosomes, with the former cells growing twofold slower than the latter ones, indicating that the linoleate content itself and not only fluidity could be essential for normal membrane functionality. A similar deleterious effect was found after RNAi in BSF, even with a mere 8% reduction of OD activity, indicating that its full activity is essential. CONCLUSIONS/SIGNIFICANCE: As OD is essential for trypanosomes and is not present in mammalian cells, it is a promising target for chemotherapy of African trypanosomiasis.


Subject(s)
Fatty Acid Desaturases/chemistry , Fatty Acid Desaturases/genetics , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxidoreductases Acting on CH-CH Group Donors/genetics , Trypanosoma brucei brucei/metabolism , Animals , Chemistry, Pharmaceutical/methods , Drug Design , Enzyme Inhibitors/pharmacology , Fatty Acids/metabolism , Heme/chemistry , Humans , Linoleic Acid/chemistry , Oleic Acid/chemistry , Phenotype , RNA Interference , Stearates/chemistry , Stearoyl-CoA Desaturase/chemistry
16.
J Bacteriol ; 191(24): 7447-55, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19820084

ABSTRACT

Lipoic acid is an essential cofactor required for the function of key metabolic pathways in most organisms. We report the characterization of a Bacillus subtilis mutant obtained by disruption of the lipA (yutB) gene, which encodes lipoyl synthase (LipA), the enzyme that catalyzes the final step in the de novo biosynthesis of this cofactor. The function of lipA was inferred from the results of genetic and physiological experiments, and this study investigated its role in B. subtilis fatty acid metabolism. Interrupting lipoate-dependent reactions strongly inhibits growth in minimal medium, impairing the generation of branched-chain fatty acids and leading to accumulation of copious amounts of straight-chain saturated fatty acids in B. subtilis membranes. Although depletion of LipA induces the expression of the Delta5 desaturase, controlled by a two-component system that senses changes in membrane properties, the synthesis of unsaturated fatty acids is insufficient to support growth in the absence of precursors for branched-chain fatty acids. However, unsaturated fatty acids generated by deregulated overexpression of the Delta5 desaturase functionally replaces lipoic acid-dependent synthesis of branched-chain fatty acids. Furthermore, we show that the cold-sensitive phenotype of a B. subtilis strain deficient in Delta5 desaturase is suppressed by isoleucine only if LipA is present.


Subject(s)
Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fatty Acids/biosynthesis , Sulfurtransferases/genetics , Sulfurtransferases/metabolism , Bacillus subtilis/growth & development , Biosynthetic Pathways , Culture Media/chemistry , Gene Deletion , Gene Knockout Techniques
17.
J Bacteriol ; 190(24): 8197-203, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18931122

ABSTRACT

The Brucella cell envelope contains the zwitterionic phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Synthesis of PC occurs exclusively via the PC synthase pathway, implying that the pathogen depends on the choline synthesized by the host cell to form PC. Notably, PC is necessary to sustain a chronic infection process, which suggests that the membrane lipid content is relevant for Brucella virulence. In this study we investigated the first step of PE biosynthesis in B. abortus, which is catalyzed by phosphatidylserine synthase (PssA). Disruption of pssA abrogated the synthesis of PE without affecting the growth in rich complex medium. In minimal medium, however, the mutant required choline supplementation for growth, suggesting that at least PE or PC is necessary for Brucella viability. The absence of PE altered cell surface properties, but most importantly, it impaired several virulence traits of B. abortus, such as intracellular survival in both macrophages and HeLa cells, the maturation of the replicative Brucella-containing vacuole, and mouse colonization. These results suggest that membrane phospholipid composition is critical for the interaction of B. abortus with the host cell.


Subject(s)
Brucella abortus/metabolism , Brucella abortus/pathogenicity , Phosphatidylethanolamines/biosynthesis , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Brucella abortus/genetics , Brucellosis/microbiology , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/genetics , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/metabolism , DNA, Bacterial/genetics , Female , Gene Knockout Techniques , Genes, Bacterial , HeLa Cells , Humans , Macrophages/microbiology , Mice , Mice, Inbred BALB C , Mutation , Phosphatidylcholines/biosynthesis , Plasmids , Virulence
18.
Mol Microbiol ; 68(4): 987-96, 2008 May.
Article in English | MEDLINE | ID: mdl-18384517

ABSTRACT

Bacteria stringently regulate the synthesis of their membrane phospholipids, but the responsible regulatory mechanisms are incompletely understood. Bacillus subtilis FabF, the target of the mycotoxin cerulenin, catalyses the condensation of malonyl-ACP with acyl-ACP to extend the growing acyl chain by two carbons. Here we show that B. subtilis strains containing the fabF1 allele, which codes for the cerulenin-insensitive protein FabF[I108F], overexpressed several genes involved in fatty acid and phospholipid biosynthesis (the fap regulon) and had significantly elevated levels of malonyl-CoA. These results pinpointed FabF[I108F] as responsible for the increased malonyl-CoA production, which in turn acts as an inducer of the fap regulon by impairing the binding of the FapR repressor to its DNA targets. Synthesis of acyl-ACPs by a cell-free fatty acid system prepared from fabF1 cells showed the accumulation of short- and medium-chain acyl-ACPs. These results indicate that the acyl-ACP chain length acceptance of FabF[I108F] is biased towards shorter acyl-ACPs. We also provide evidence that upregulation of FabF[I108F] is essential for survival and for resistance to cerulenin of fabF1 cells. These findings indicate that malonyl-CoA is a key molecule to monitor lipid metabolism functioning and trigger appropriate genetic and biochemical adjustments to relieve dysfunctions of this essential metabolic pathway.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Bacillus subtilis/enzymology , Gene Expression Regulation, Bacterial , Lipid Metabolism/genetics , Malonyl Coenzyme A/genetics , Repressor Proteins/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/drug effects , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Bacillus subtilis/genetics , Cerulenin/pharmacology , Fatty Acids/genetics , Fatty Acids/metabolism , Malonyl Coenzyme A/metabolism , Phospholipids/genetics , Phospholipids/metabolism , Regulon , Repressor Proteins/genetics
19.
Appl Environ Microbiol ; 74(9): 2573-82, 2008 May.
Article in English | MEDLINE | ID: mdl-18310412

ABSTRACT

The terminal reaction in triacylglyceride (TAG) biosynthesis is the esterification of diacylglycerol (DAG) with a fatty acid molecule. To study this reaction in Streptomyces coelicolor, we analyzed three candidate genes (sco0958, sco1280, and sco0123) whose products significantly resemble the recently identified wax ester synthase/acyl-coenzyme A (CoA):DAG acyltransferase (DGAT) from Acinetobacter baylyi. The deletion of either sco0123 or sco1280 resulted in no detectable decrease in TAG accumulation. In contrast, the deletion of sco0958 produced a dramatic reduction in neutral lipid production, whereas the overexpression of this gene yielded a significant increase in de novo TAG biosynthesis. In vitro activity assays showed that Sco0958 mediates the esterification of DAG using long-chain acyl-CoAs (C(14) to C(18)) as acyl donors. The K(m) and V(max) values of this enzyme for myristoyl-CoA were 45 muM and 822 nmol mg(-1) min(-1), respectively. Significantly, the triple mutant strain was not completely devoid of storage lipids, indicating the existence of alternative TAG-biosynthetic routes. We present strong evidence demonstrating that the residual production of TAG in this mutant strain is mediated, at least in part, by an acyl-CoA-dependent pathway, since the triple mutant still exhibited DGAT activity. More importantly, there was substantial phospholipid:DGAT (PDAT) activity in the wild type and in the triple mutant. This is the first time that a PDAT activity has been reported for bacteria, highlighting the extreme metabolic diversity of this industrially important soil microorganism.


Subject(s)
Metabolic Networks and Pathways , Streptomyces coelicolor/metabolism , Triglycerides/biosynthesis , Acinetobacter/enzymology , Acyl Coenzyme A/metabolism , Acyltransferases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Cloning, Molecular , Gene Deletion , Gene Dosage , Gene Expression , Kinetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Streptomyces coelicolor/enzymology , Streptomyces coelicolor/genetics , Triglycerides/genetics
20.
J Bacteriol ; 189(22): 8139-44, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17827283

ABSTRACT

Unsaturated fatty acid (UFA) biosynthesis is essential for the maintenance of membrane structure and function in many groups of anaerobic bacteria. Like Escherichia coli, the human pathogen Streptococcus pneumoniae produces straight-chain saturated fatty acids (SFA) and monounsaturated fatty acids. In E. coli UFA synthesis requires the action of two gene products, the essential isomerase/dehydratase encoded by fabA and an elongation condensing enzyme encoded by fabB. S. pneumoniae lacks both genes and instead employs a single enzyme with only an isomerase function encoded by the fabM gene. In this paper we report the construction and characterization of an S. pneumoniae 708 fabM mutant. This mutant failed to grow in complex medium, and the defect was overcome by addition of UFAs to the growth medium. S. pneumoniae fabM mutants did not produce detectable levels of monounsaturated fatty acids as determined by gas chromatography-mass spectrometry and thin-layer chromatography analysis of the radiolabeled phospholipids. We also demonstrate that a fabM null mutant of the cariogenic organism Streptococcus mutants is a UFA auxotroph, indicating that FabM is the only enzyme involved in the control of membrane fluidity in streptococci. Finally we report that the fabN gene of Enterococcus faecalis, coding for a dehydratase/isomerase, complements the growth of S. pneumoniae fabM mutants. Taken together, these results suggest that FabM is a potential target for chemotherapeutic agents against streptococci and that S. pneumoniae UFA auxotrophs could help identify novel genes encoding enzymes involved in UFA biosynthesis.


Subject(s)
Fatty Acids, Unsaturated/biosynthesis , Streptococcus mutans/metabolism , Streptococcus pneumoniae/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Isomerases/genetics , Isomerases/metabolism , Mutation , Streptococcus mutans/genetics , Streptococcus pneumoniae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...