Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Rep ; 12: 564-573, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798986

ABSTRACT

The flavonoid compound Isorhamnetin (IRMN) is known for its considerable pharmacological properties, which include antioxidant and anti-inflammatory effects, as well as significant protective actions on heart health. However, the potential of IRMN to guard against heart damage caused by cisplatin (CP), a common chemotherapeutic agent, and the specific mechanisms involved, remain unexplored areas. This research was designed to investigate how IRMN counters CP-induced heart toxicity. In our study, mice were orally given IRMN at 50 or 150 mg/kg/day for a week, followed by CP injections (5 mg/kg/day) on the third and sixth days. The animals were euthanized under sodium pentobarbital anesthesia (50 mg/kg, intraperitoneally) on the eighth day to collect blood and heart tissues for further examination. Our findings reveal that IRMN administration significantly reduced the heart damage and the elevation of heart injury markers such as cardiac troponin I, creatine kinase, and lactate dehydrogenase induced by CP. IRMN also effectively lowered oxidative stress markers, including reactive oxygen species and malondialdehyde, while boosting ATP production and antioxidants like superoxide dismutase, catalase, and glutathione. The compound's capability to diminish the levels of pro-inflammatory cytokines like tumor necrosis factor-alpha and interleukin-6, alongside modulating apoptosis-regulating proteins (enhancing Bcl-2 while suppressing Bax and Caspase-3 expression), further underscores its cardioprotective effect. Notably, IRMN modulated the p62-Keap1-Nrf2 signaling pathway, suggesting a mechanism through which it exerts its protective effects against CP-induced cardiac injury. These insights underscore the potential of IRMN as an effective adjunct in cancer therapy, offering a strategy to mitigate the cardiotoxic side effects of cisplatin.

2.
Int J Mol Sci ; 25(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38396638

ABSTRACT

The study of intercellular adhesion molecule-1 (ICAM-1) and SIRT1, a member of the sirtuin family with nitric oxide (NO), is emerging in depression and anxiety. As with all antidepressants, the efficacy is delayed and inconsistent. Ascorbic acid (AA) and vitamin D (D) showed antidepressant properties, while etifoxine (Etx), a GABAA agonist, alleviates anxiety symptoms. The present study aimed to investigate the potential augmentation of citalopram using AA, D and Etx and related the antidepressant effect to brain and serum ICAM-1, SIRT1 and NO in an animal model. BALB/c mice were divided into naive, control, citalopram, citalopram + etx, citalopram + AA, citalopram + D and citalopram + etx + AA + D for 7 days. On the 8th day, the mice were restrained for 8 h, followed by a forced swim test and marble burying test before scarification. Whole-brain and serum expression of ICAM-1, Sirt1 and NO were determined. Citalopram's antidepressant and sedative effects were potentiated by ascorbic acid, vitamin D and etifoxine alone and in combination (p < 0.05), as shown by the decreased floating time and rearing frequency. Brain NO increased significantly (p < 0.05) in depression and anxiety and was associated with an ICAM-1 increase versus naive (p < 0.05) and a Sirt1 decrease (p < 0.05) versus naive. Both ICAM-1 and Sirt1 were modulated by antidepressants through a non-NO-dependent pathway. Serum NO expression was unrelated to serum ICAM-1 and Sirt1. Brain ICAM-1, Sirt1 and NO are implicated in depression and are modulated by antidepressants.


Subject(s)
Anxiety , Citalopram , Depression , Nitric Oxide , Oxazines , Animals , Mice , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Anxiety/drug therapy , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Citalopram/pharmacology , Citalopram/therapeutic use , Depression/drug therapy , Intercellular Adhesion Molecule-1 , Oxazines/pharmacology , Oxazines/therapeutic use , Sirtuin 1 , Vitamin D/pharmacology , Vitamin D/therapeutic use , Vitamins , Drug Therapy, Combination
3.
Curr Issues Mol Biol ; 45(9): 7668-7679, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37754268

ABSTRACT

Oxidative stress and inflammation are implicated in depression. While selective serotonin reuptake inhibitors (SSRIs) like escitalopram are commonly prescribed as first-line treatments, their inconsistent efficacy and delayed onset of action necessitates the exploration of adjunctive therapies. Isorhamnetin, a flavonol, has shown antioxidant and anti-inflammatory properties that makes exploring its antidepressant effect attractive. This study aims to investigate the adjuvant potential of isorhamnetin in combination with escitalopram to enhance its antidepressant efficacy in a lipopolysaccharide (LPS)-induced depression model using Swiss albino mice. Behavioral paradigms, such as the forced swim test and open field test, were employed to assess depressive symptoms, locomotion, and sedation. Additionally, enzyme-linked immunosorbent assays were utilized to measure Nrf2, BDNF, HO-1, NO, and IL-6 levels in the prefrontal cortex and hippocampus. The results demonstrate that isorhamnetin significantly improves the antidepressant response of escitalopram, as evidenced by reduced floating time in the forced swim test. Moreover, isorhamnetin enhanced antidepressant effects of escitalopram and effectively restored depleted levels of Nrf2, BDNF, and HO-1 in the cortex caused by LPS-induced depression. Isorhamnetin shows promise in enhancing the efficacy of conventional antidepressant therapy through antioxidant and anti-inflammatory effects.

4.
Nutrients ; 15(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37375593

ABSTRACT

The aim of this study was to investigate the potential antidepressant and anxiolytic effects of vitamin C and vitamin D in a stress-induced mouse model of depression, while also exploring the association between these effects and the levels of circulating NOx, periostin, and FKBPL. Our findings revealed that both vitamin C and vitamin D exhibited comparable antidepressant effects to escitalopram, a commonly used antidepressant, without demonstrating any anxiolytic effects. The antidepressant properties of vitamin C and vitamin D were linked to the normalization of Nox and FKBPL levels, while the levels of periostin showed no significant correlation. These results are consistent with previous research, indicating that the antidepressant effects of vitamin C and vitamin D may be attributed to their antioxidant and anti-inflammatory properties, as well as their modulation of neurotransmission and norepinephrine release. Additionally, our study uncovered elevated levels of periostin in stress-induced depression, which were only restored to normal levels by escitalopram, suggesting a potential role for periostin in mood disorders. Furthermore, FKBPL and NOx levels were increased in stress-induced depression and normalized by treatment with vitamin C, vitamin D, and escitalopram, indicating their involvement in the stress response and gene expression regulation. However, it is important to acknowledge certain limitations of our research, such as the use of a single depression induction model and limited dosing regimens. Future investigations should focus on examining these markers in specific brain regions, such as the hippocampus and prefrontal cortex, to gain a more comprehensive understanding of their potential implications for depression. Overall, our findings suggest that vitamin C, vitamin D, and escitalopram may possess antidepressant properties mediated by NOx and FKBPL levels, while emphasizing the potential significance of periostin in the context of depression.


Subject(s)
Anti-Anxiety Agents , Escitalopram , Mice , Animals , Citalopram/pharmacology , Depression/drug therapy , Depression/etiology , Depression/metabolism , Ascorbic Acid/pharmacology , Antidepressive Agents/pharmacology , Vitamins , Vitamin D , Cell Cycle Proteins
5.
Cells ; 12(2)2023 01 09.
Article in English | MEDLINE | ID: mdl-36672202

ABSTRACT

2',3,3,5'-Tetramethyl-4'-nitro-2'H-1,3'-bipyrazole (TMNB) is a novel bipyrazole compound with unknown therapeutic potential in diabetes mellitus. This study aims to investigate the anti-diabetic effects of TMNB in a high-fat diet and streptozotocin-(HFD/STZ)-induced rat model of type 2 diabetes mellitus (T2D). Rats were fed HFD, followed by a single low dose of STZ (40 mg/kg). HFD/STZ diabetic rats were treated orally with TMNB (10 mg/kg) or (200 mg/kg) metformin for 10 days before terminating the experiment and collecting plasma, soleus muscle, adipose tissue, and liver for further downstream analysis. TMNB reduced the elevated levels of serum glucose in diabetic rats compared to the vehicle control group (p < 0.001). TMNB abrogated the increase in serum insulin in the treated diabetic group compared to the vehicle control rats (p < 0.001). The homeostasis model assessment of insulin resistance (HOMA-IR) was decreased in the diabetic rats treated with TMNB compared to the vehicle controls. The skeletal muscle and adipose tissue protein contents of GLUT4 and AMPK were upregulated following treatment with TMNB (p < 0.001, < 0.01, respectively). TMNB was able to upregulate GLUT2 and AMPK protein expression in liver (p < 0.001, < 0.001, respectively). LDL, triglyceride, and cholesterol were reduced in diabetic rats treated with TMNB compared to the vehicle controls (p < 0.001, 0.01, respectively). TMNB reduced MDA and IL-6 levels (p < 0.001), and increased GSH level (p < 0.05) in diabetic rats compared to the vehicle controls. Conclusion: TMNB ameliorates insulin resistance, oxidative stress, and inflammation in a T2D model. TMNB could represent a promising therapeutic agent to treat T2D.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Metformin , Rats , Animals , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance/physiology , Diabetes Mellitus, Experimental/metabolism , AMP-Activated Protein Kinases , Metformin/pharmacology , Metformin/therapeutic use
6.
Molecules ; 28(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36677559

ABSTRACT

Background: Isorhamnetin is a flavonoid that is found in medical plants. Several studies showed that isorhamnetin has anti-inflammatory and anti-obesity effects. This study aims to investigate the anti-diabetic effects of isorhamnetin in a high-fat diet and Streptozotocin-(HFD/STZ)-induced mice model of type 2 diabetes. Materials and Methods: Mice were fed with HFD followed by two consecutive low doses of STZ (40 mg/kg). HFD/STZ diabetic mice were treated orally with isorhamnetin (10 mg/kg) or (200 mg/kg) metformin for 10 days before sacrificing the mice and collecting plasma and soleus muscle for further analysis. Results: Isorhamnetin reduced the elevated levels of serum glucose compared to the vehicle control group (p < 0.001). Isorhamnetin abrogated the increase in serum insulin in the treated diabetic group compared to the vehicle control mice (p < 0.001). The homeostasis model assessment of insulin resistance (HOMA-IR) was decreased in diabetic mice treated with isorhamnetin compared to the vehicle controls. Fasting glucose level was significantly lower in diabetic mice treated with isorhamnetin during the intraperitoneal glucose tolerance test (IPGTT) (p < 0.001). The skeletal muscle protein contents of GLUT4 and p-AMPK-α were upregulated following treatment with isorhamnetin (p > 0.01). LDL, triglyceride, and cholesterol were reduced in diabetic mice treated with isorhamnetin compared to vehicle control (p < 0.001). Isorhamnetin reduced MDA, and IL-6 levels (p < 0.001), increased GSH levels (p < 0.001), and reduced GSSG levels (p < 0.05) in diabetic mice compared to vehicle control. Conclusions: Isorhamnetin ameliorates insulin resistance, oxidative stress, and inflammation. Isorhamnetin could represent a promising therapeutic agent to treat T2D.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Mice , Animals , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance/physiology , Diet, High-Fat/adverse effects , Streptozocin/pharmacology , Diabetes Mellitus, Experimental/metabolism , Inflammation/drug therapy , Disease Models, Animal , Oxidative Stress , Glucose/pharmacology , Blood Glucose , Hypoglycemic Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...