Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acad Radiol ; 25(5): 594-598, 2018 05.
Article in English | MEDLINE | ID: mdl-29729856

ABSTRACT

Traditionally, radiologists have been responsible for the protocol of imaging studies, imaging acquisition, supervision of imaging technologists, and interpretation and reporting of imaging findings. In this article, we outline how radiology needs to change and adapt to a role of providing value-based, integrated health-care delivery. We believe that the way to best serve our specialty and our patients is to undertake a fundamental paradigm shift in how we practice. We describe the need for imaging institutes centered on disease entities (eg, lung cancer, multiple sclerosis) to not only optimize clinical care and patient outcomes, but also spur the development of a new educational focus, which will increase opportunities for medical trainees and other health professionals. These institutes will also serve as unique environments for testing and implementing new technologies and for generating new ideas for research and health-care delivery. We propose that the imaging institutes focus on how imaging practices-including new innovations-improve patient care outcomes within a specific disease framework. These institutes will allow our specialty to lead patient care, provide the necessary infrastructure for state-of-the art-education of trainees, and stimulate innovative and clinically relevant research.


Subject(s)
Academies and Institutes , Diagnostic Imaging , Patient Care , Radiology/methods , Biomedical Research , Delivery of Health Care, Integrated , Humans , Inventions , Patient-Centered Care , Radiology/education
2.
Acad Radiol ; 24(6): 667-676, 2017 06.
Article in English | MEDLINE | ID: mdl-28258904

ABSTRACT

RATIONALE AND OBJECTIVES: Infectious encephalitis is a relatively common cause of morbidity and mortality. Treatment of infectious encephalitis with antiviral medication can be highly effective when administered promptly. Clinical mimics of encephalitis arise from a broad range of pathologic processes, including toxic, metabolic, neoplastic, autoimmune, and cardiovascular etiologies. These mimics need to be rapidly differentiated from infectious encephalitis to appropriately manage the correct etiology; however, the many overlapping signs of these various entities present a challenge to accurate diagnosis. A systematic approach that considers both the clinical manifestations and the imaging findings of infectious encephalitis and its mimics can contribute to more accurate and timely diagnosis. MATERIALS AND METHODS: Following an institutional review board approval, a health insurance portability and accountability act (HIPAA)-compliant search of our institutional imaging database (teaching files) was conducted to generate a list of adult and pediatric patients who presented between January 1, 1995 and October 10, 2013 for imaging to evaluate possible cases of encephalitis. Pertinent medical records, including clinical notes as well as surgical and pathology reports, were reviewed and correlated with imaging findings. Clinical and imaging findings were combined to generate useful flowcharts designed to assist in distinguishing infectious encephalitis from its mimics. Key imaging features were reviewed and were placed in the context of the provided flowcharts. RESULTS: Four flowcharts were presented based on the primary anatomic site of imaging abnormality: group 1: temporal lobe; group 2: cerebral cortex; group 3: deep gray matter; and group 4: white matter. An approach that combines features on clinical presentation was then detailed. Imaging examples were used to demonstrate similarities and key differences. CONCLUSIONS: Early recognition of infectious encephalitis is critical, but can be quite complex due to diverse pathologies and overlapping features. Synthesis of both the clinical and imaging features of infectious encephalitis and its mimics is critical to a timely and accurate diagnosis. The use of the flowcharts presented in this article can further enable both clinicians and radiologists to more confidently differentiate encephalitis from its mimics and improve patient care.


Subject(s)
Encephalitis/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Diagnosis, Differential , Encephalitis/diagnosis , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Retrospective Studies , Temporal Lobe/diagnostic imaging , Tomography, X-Ray Computed , White Matter/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...