Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36079942

ABSTRACT

In this study, the effect of KBr salt on the growth of TiO2 nanorods (NRs) was systematically studied. The addition of KBr with different concentrations provides a controllable growth of TiO2 NRs using hydrothermal method. The results revealed that the presence of KBr molecules affects the growth rate by suppressing the growth in the lateral direction and allowing for axial growth. This results in affecting the morphology by decreasing the diameter of the nanorods, and increasing the free space between them. Enhancing the free spaces between the adjacent nanorods gives rise to remarkable increase in the internal surface area, with more exposure side surface. To obtain benefit from the enlargement in the inner surface area, TiO2 NRs were used for the preparation of MoS2/TiO2 heterostructures. To study the influence of the morphology on their activity, TiO2 NRs samples with different KBr concentrations as well as the MoS2/TiO2 heterostructures were evaluated towards the photocatalytic degradation of Rhodamine B dyes.

2.
Nanomaterials (Basel) ; 9(1)2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30626067

ABSTRACT

Electrospinning has gained wide attention recently in biomedical applications. Electrospun biocompatible scaffolds are well-known for biomedical applications such as drug delivery, wound dressing, and tissue engineering applications. In this review, the synthesis of polymer-based fiber composites using an electrospinning technique is discussed. Formerly, metal particles were then deposited on the surface of electrospun fibers using sputtering technology. Key nanometals for biomedical applications including silver and copper nanoparticles are discussed throughout this review. The formulated scaffolds were found to be suitable candidates for biomedical uses such as antibacterial coatings, surface modification for improving biocompatibility, and tissue engineering. This review briefly mentions the characteristics of the nanostructures while focusing on how nanostructures hold potential for a wide range of biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...