Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e17286, 2024.
Article in English | MEDLINE | ID: mdl-38708356

ABSTRACT

Drought and salinity are the major abiotic stress factors negatively affecting the morphophysiological, biochemical, and anatomical characteristics of numerous plant species worldwide. The detrimental effects of these environmental factors can be seen in leaf and stem anatomical structures including the decrease in thickness of cell walls, palisade and spongy tissue, phloem and xylem tissue. Also, the disintegration of grana staking, and an increase in the size of mitochondria were observed under salinity and drought conditions. Drought and salt stresses can significantly decrease plant height, number of leaves and branches, leaf area, fresh and dry weight, or plant relative water content (RWC%) and concentration of photosynthetic pigments. On the other hand, stress-induced lipid peroxidation and malondialdehyde (MDA) production, electrolyte leakage (EL%), and production of reactive oxygen species (ROS) can increase under salinity and drought conditions. Antioxidant defense systems such as catalase, peroxidase, glutathione reductase, ascorbic acid, and gamma-aminobutyric acid are essential components under drought and salt stresses to protect the plant organelles from oxidative damage caused by ROS. The application of safe and eco-friendly treatments is a very important strategy to overcome the adverse effects of drought and salinity on the growth characteristics and yield of plants. It is shown that treatments with plant growth-promoting bacteria (PGPB) can improve morphoanatomical characteristics under salinity and drought stress. It is also shown that yeast extract, mannitol, proline, melatonin, silicon, chitosan, α-Tocopherols (vitamin E), and biochar alleviate the negative effects of drought and salinity stresses through the ROS scavenging resulting in the improvement of plant attributes and yield of the stressed plants. This review discusses the role of safety and eco-friendly treatments in alleviating the harmful effects of salinity and drought associated with the improvement of the anatomical, morphophysiological, and biochemical features in plants.


Subject(s)
Stress, Physiological , Stress, Physiological/drug effects , Droughts , Plant Development/drug effects , Bacteria/metabolism , Bacteria/drug effects , Salinity , Plants/metabolism , Plants/drug effects
2.
Cureus ; 14(10): e30325, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36407196

ABSTRACT

Introduction Immunotherapy is considered a new modality in the treatment of cancer with emerging different toxicity profiles. It is essential for healthcare practitioners to be aware of these side effects. Emergency medicine physicians are first-line health providers and should have the required knowledge and understanding of immunotherapy-related adverse effects to be able to identify and manage such patients. The study aimed to assess the level of knowledge of immunotherapy toxicity among emergency medicine physicians in Riyadh. Methods This cross-sectional study was conducted at the largest emergency medicine training centers in Riyadh. In total, 106 emergency medicine physicians participated. The questionnaire contained multiple-choice questions that assessed the knowledge and management of immunotherapy-related toxicities. Results The majority of the participants were male residents. The response rate varied for the selected training centers. Regarding the level of knowledge regarding the toxic side effects of cancer immunotherapy, the majority were likely to choose "I don't know." Conclusion This study, in support of the literature, revealed the gap in knowledge of the basic principles of cancer immunotherapy, despite increasing uses and indications of immunotherapy. The findings indicate the need for non-oncologist health practitioners, including emergency physicians, to enhance their knowledge of immunotherapy-related adverse events in order to improve their clinical decision-making skills.

3.
Saudi J Biol Sci ; 29(6): 103304, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35574285

ABSTRACT

In this study, the blood volume and oxygen saturation of tumors were measured after photoacoustic imaging (PAI) under conditions of pre-photodynamic therapy (PDT), post-PDT, and 4 hrs, and 24 hrs post-PDT. PDTs with aminolevulinic acid (ALA) and low and high doses of benzoporphyrin derivative (BPD) were conducted to observe oxygen saturation changes, and the rapid oxygen consumption in the blood detected due to the action of BPD at the vascular level resulted in the recovery of PDT completion. Likewise, blood volume changes followed by ALA-PDT and BPD-PDT at low and high doses depicted a fast expansion of the blood volume after treatment. The tumor subjected to a high dose of ALA-PDT showed a partial alteration of Hb-pO2 in the first 24 hrs, as did the tumors treated with two ALA- and BPD-mediated PDTs. The Hb-pO2 started reducing immediately post-PDT and was less than 30% after 4 hrs until 24 hrs post-PDT. Reduced vascular demand was possibly due to tumor necrosis, as shown by the permanent damage in the cancer cells' bioluminescence signal. The ALA-mediated PDT-subjected tumor showed a 50% drop in BV at 24 hrs post-PDT, which is suggestive of vascular pruning. The studied data of blood volume against BLI showed the blood volume and oxygenation variations validating the cells' metabolic activity, including cell death.

4.
Bioinformation ; 18(9): 834-840, 2022.
Article in English | MEDLINE | ID: mdl-37426504

ABSTRACT

It is of interest to document data on the molecular dynamics simulation analysis of alpha-cobratoxin docked with phytochemical compounds. This can be used as effective drug candidates against the snake and scorpion venom. It should be noted experimental verification is needed to further validate the current data.

SELECTION OF CITATIONS
SEARCH DETAIL
...