Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Lett Appl Microbiol ; 77(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38653718

ABSTRACT

The poultry industry is a very important agricultural and industrial sector in Tunisia and Nigeria, with little information about occurrence of diarrheagenic Escherichia coli in the farmers and chickens. This study aimed to detect the prevalence of diarrheal E. coli in humans and poultry and to investigate plasmid-mediated quinolone resistance (PMQR) genes in both countries. Seventy-four isolates of E. coli were studied; nine different virulence genes were screened by PCR. Serotyping was performed only for pathotypes as well as the determining of antibiotic resistance profiles against 21 antibiotics. PMQR genes were investigated by PCR. EAEC was the most abundant pathotype (37/74; 50%) in human and chicken isolates, whereas single EHEC and EPEC (1/74, 1.35%) pathotypes were detected in Tunisia and Nigeria, respectively. About 17 (45.95%) quinolones/fluoroquinolones-resistant isolates were detected, from which the following PMQR genes were detected: aac(6')-Ib-cr (8/17, 47.05%), qepA (6/17, 35.29%), qnrA + qnrB (2/17, 11.76%), and qnrS gene (1/17, 5.88%). Our findings highlight high occurrence of EAEC pathotype in Tunisia and Nigeria, more frequent than EPEC and EHEC. Additionally, all E. coli pathotypes isolated from different sources (humans, poultry) showed resistance to several antibiotics, which are in use as therapeutic choices in Tunisia and Nigeria.


Subject(s)
Anti-Bacterial Agents , Chickens , Escherichia coli Infections , Escherichia coli , Plasmids , Poultry Diseases , Quinolones , Animals , Chickens/microbiology , Quinolones/pharmacology , Tunisia , Nigeria , Plasmids/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/epidemiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Anti-Bacterial Agents/pharmacology , Humans , Diarrhea/microbiology , Diarrhea/veterinary , Drug Resistance, Bacterial/genetics , Farmers , Microbial Sensitivity Tests , Escherichia coli Proteins/genetics , Virulence Factors/genetics
2.
Open Vet J ; 14(1): 242-255, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633192

ABSTRACT

Background: Clostridium perfringens (CP) is an emerging anaerobic pathogen that can aggravate severe fatal infections in different hosts and livestock. Aim: This paper was designed to monitor the antibacterial efficacy of Moringa oleifera (M. oleifera) plant against different CP isolates of variant toxin genotypes comparing that with commercial antibiotics in the veterinary field. Methods: A total of 200 examined fecal, intestinal, and liver samples from cattle, sheep, and goats were investigated bacteriologically and biochemically for CP. Then, the isolates were examined by polymerase chain reaction (PCR) for toxin gene typing. Thereafter, the antimicrobial susceptibility testing as well as the antibacterial efficacy of M. oleifera were evaluated and statistically analyzed against recovered isolates. Results: The prevalence rate of CP was 51% (102/200); of which 54.5% was from cattle, 50% from sheep, and 40% from goat. Moreover, all CP isolates were highly resistant to tetracycline and lincomycin drugs; meanwhile, they were of the least resistance against ciprofloxacin (8.3%-16.7%), cefotaxime (16.7%-25%), and gentamycin (26.7%-33.3%). For M. oleifera, high antibacterial efficacy with greater inhibition zones of the plant was recorded with its oil (20-24 mm) and ethanolic extracts (16-20 mm) against CP than the aqueous extract (≤ 10 mm). A good correlation was stated between M. oleifera oil and toxin type of CP isolates particularly type A followed by D and B types. Interestingly, the oil and ethanolic extracts of M. oleifera gave higher antibacterial efficacy than most commercial antibiotics against the recovered isolates. Conclusion: This study highlighted the potent antibacterial properties of M. oleifera for suppressing CP isolated from farm animals; hence, more investigations on M. oleifera are suggested to support its use as a medical herbal plant substituting antibiotics hazards and resistance problems worldwide.


Subject(s)
Animals, Domestic , Moringa oleifera , Animals , Cattle , Sheep , Clostridium perfringens , Moringa oleifera/chemistry , Anti-Bacterial Agents/pharmacology , Polymerase Chain Reaction/veterinary , Goats
3.
Front Microbiol ; 14: 1155622, 2023.
Article in English | MEDLINE | ID: mdl-37180257

ABSTRACT

The significance of nanoparticles (NPs) in technological advancements is due to their adaptable characteristics and enhanced performance over their parent material. They are frequently synthesized by reducing metal ions into uncharged nanoparticles using hazardous reducing agents. However, there have been several initiatives in recent years to create green technology that uses natural resources instead of dangerous chemicals to produce nanoparticles. In green synthesis, biological methods are used for the synthesis of NPs because biological methods are eco-friendly, clean, safe, cost-effective, uncomplicated, and highly productive. Numerous biological organisms, such as bacteria, actinomycetes, fungi, algae, yeast, and plants, are used for the green synthesis of NPs. Additionally, this paper will discuss nanoparticles, including their types, traits, synthesis methods, applications, and prospects.

4.
Front Microbiol ; 14: 1140378, 2023.
Article in English | MEDLINE | ID: mdl-36998401

ABSTRACT

Plant-associated microbes play crucial roles in plant health and promote growth under stress. Tomato (Solanum lycopersicum) is one of the strategic crops grown throughout Egypt and is a widely grown vegetable worldwide. However, plant disease severely affects tomato production. The post-harvest disease (Fusarium wilt disease) affects food security globally, especially in the tomato fields. Thus, an alternative effective and economical biological treatment to the disease was recently established using Trichoderma asperellum. However, the role of rhizosphere microbiota in the resistance of tomato plants against soil-borne Fusarium wilt disease (FWD) remains unclear. In the current study, a dual culture assay of T. asperellum against various phytopathogens (e.g., Fusarium oxysporum, F. solani, Alternaria alternata, Rhizoctonia solani, and F. graminerarum) was performed in vitro. Interestingly, T. asperellum exhibited the highest mycelial inhibition rate (53.24%) against F. oxysporum. In addition, 30% free cell filtrate of T. asperellum inhibited F. oxysporum by 59.39%. Various underlying mechanisms were studied to explore the antifungal activity against F. oxysporum, such as chitinase activity, analysis of bioactive compounds by gas chromatography-mass spectrometry (GC-MS), and assessment of fungal secondary metabolites against F. oxysporum mycotoxins in tomato fruits. Additionally, the plant growth-promoting traits of T. asperellum were studied (e.g., IAA production, Phosphate solubilization), and the impact on tomato seeds germination. Scanning electron microscopy, plant root sections, and confocal microscopy were used to show the mobility of the fungal endophyte activity to promote tomato root growth compared with untreated tomato root. T. asperellum enhanced the growth of tomato seeds and controlled the wilt disease caused by the phytopathogen F. oxysporum by enhancing the number of leaves as well as shoot and root length (cm) and fresh and dry weights (g). Furthermore, Trichoderma extract protects tomato fruits from post-harvest infection by F. oxysporum. Taking together, T. asperellum represents a safe and effective controlling agent against Fusarium infection of tomato plants.

5.
Molecules ; 28(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36677853

ABSTRACT

The novel pathogenic virus was discovered in Wuhan, China (December 2019), and quickly spread throughout the world. Further analysis revealed that the pathogenic strain of virus was corona but it was distinct from other coronavirus strains, and thus it was renamed 2019-nCoV or SARS-CoV-2. This coronavirus shares many characteristics with other coronaviruses, including SARS-CoV and MERS-CoV. The clinical manifestations raised in the form of a cytokine storm trigger a complicated spectrum of pathophysiological changes that include cardiovascular, kidney, and liver problems. The lack of an effective treatment strategy has imposed a health and socio-economic burden. Even though the mortality rate of patients with this disease is lower, since it is judged to be the most contagious, it is considered more lethal. Globally, the researchers are continuously engaged to develop and identify possible preventive and therapeutic regimens for the management of disease. Notably, to combat SARS-CoV-2, various vaccine types have been developed and are currently being tested in clinical trials; these have also been used as a health emergency during a pandemic. Despite this, many old antiviral and other drugs (such as chloroquine/hydroxychloroquine, corticosteroids, and so on) are still used in various countries as emergency medicine. Plant-based products have been reported to be safe as alternative options for several infectious and non-infectious diseases, as many of them showed chemopreventive and chemotherapeutic effects in the case of tuberculosis, cancer, malaria, diabetes, cardiac problems, and others. Therefore, plant-derived products may play crucial roles in improving health for a variety of ailments by providing a variety of effective cures. Due to current therapeutic repurposing efforts against this newly discovered virus, we attempted to outline many plant-based compounds in this review to aid in the fight against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Attention
6.
Antibiotics (Basel) ; 11(12)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36551347

ABSTRACT

Plant fractions have a diversity of biomolecules that can be used to make complicated reactions for the bioactive fabrication of metal nanoparticles (NPs), in addition to being beneficial as antioxidant medications or dietary supplements. The current study shows that Urtica dioica (UD) and biologically synthesized silver nanoparticles (AgNPs) of UD have antibacterial and antioxidant properties against bacteria (Escherichia coli and Pseudomonas putida) and Drosophila melanogaster (Oregon R+). According to their ability to scavenge free radicals, DPPH, ABTS, TFC, and TPC initially estimated the antioxidant potential of UD and UD AgNPs. The fabricated AgNPs were analyzed (UV−Vis, FTIR, EDS, and SEM) to determine the functional groups (alcohol, carboxylic acids, phenol, proteins, and aldehydes) and to observe the shape (agglomerated crystalline and rod-shaped structure). The disc diffusion method was used to test the antimicrobial properties of synthesized Ag-NPs against E. coli and P. putida. For 24 to 120 h, newly enclosed flies and third instar larvae of Drosophila were treated with UD and UD AgNPs. After exposure, tests for biochemical effects (acetylcholinesterase inhibition and protein estimation assays), cytotoxicity (dye exclusion), and behavioral effects (jumping and climbing assays) were conducted. The results showed that nanoparticles were found to have potent antimicrobial activity against all microbial strains tested at various concentrations. In this regard, ethno-medicinal characteristics exhibit a similar impact in D. melanogaster, showing (p < 0.05) significantly decreased cellular toxicity (trypan blue dye), enhanced biochemical markers (AChE efficacy and proteotoxicity), and improved behavioral patterns in the organism treated with UD AgNPs, especially in comparison to UD extract. The results of this study may help in the utilization of specific plants as reliable sources of natural antioxidants that may have been beneficial in the synthesis of metallic NPs, which aids in the production of nanomedicine and other therapeutic applications.

7.
Int J Biol Macromol ; 222(Pt B): 2353-2367, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36209910

ABSTRACT

Cutinases are hydrolytic enzymes secreted by phytopathogens to degrade cutin, the main polymeric component of plant cuticles. The multifaceted functionality of cutinases has allowed for their exploitation for catalytic reactions beyond their natural purpose. To diversify and expand the cutinase enzyme class, we identified five cutinase homologs from the saprotroph Aspergillus niger. One of these cutinases, AnCUT3, was over-expressed in Pichia pastoris and its biophysicochemical properties characterized. The purified recombinant AnCUT3 possessed an optimum temperature of 25 °C, an optimum pH of 5, and was stable at temperatures up to 50 °C (1 h incubation, melting point of 45.6 °C) and in a wide pH range. Kinetic studies of AnCUT3 using pNP ester substrates showed the highest catalytic efficiency, kcat/Km of 859 mM-1 s-1 toward p-nitrophenyl decanoate (C10). Although its calculated molecular mass is 27 kDa, AnCUT3 was expressed as two glycosylated proteins of molecular weights 24 and 50 kDa. Glycan profiling detected the presence of atypical paucimannose N-glycans (≤Man1-5GlcNAc) from recombinant AnCUT3, suggesting protein-dependent glycan processing of AnCUT3 in P. pastoris. AnCUT3 was also able to degrade and modify the surface of polycaprolactone and polyethylene terephthalate. Taken together, these features poise AnCUT3 as a potential biocatalyst for industrial applications.


Subject(s)
Aspergillus niger , Plastics , Kinetics , Plastics/metabolism , Recombinant Proteins/chemistry , Hydrogen-Ion Concentration , Pichia/genetics , Pichia/metabolism , Temperature , Cloning, Molecular
8.
Article in English | MEDLINE | ID: mdl-35742569

ABSTRACT

Chlamydia pneumonia, a species of the family Chlamydiacea, is a leading cause of pneumonia. Failure to eradicate C. pneumoniae can lead to chronic infection, which is why it is also considered responsible for chronic inflammatory disorders such as asthma, arthritis, etc. There is an urgent need to tackle the major concerns arising due to persistent infections caused by C. pneumoniae as no FDA-approved drug is available against this chronic infection. In the present study, an approach named subtractive proteomics was employed to the core proteomes of five strains of C. pneumonia using various bioinformatic tools, servers, and software. However, 958 non-redundant proteins were predicted from the 4754 core proteins of the core proteome. BLASTp was used to analyze the non-redundant genes against the proteome of humans, and the number of potential genes was reduced to 681. Furthermore, based on subcellular localization prediction, 313 proteins with cytoplasmic localization were selected for metabolic pathway analysis. Upon subsequent analysis, only three cytoplasmic proteins, namely 30S ribosomal protein S4, 4-hydroxybenzoate decarboxylase subunit C, and oligopeptide binding protein, were identified, which have the potential to be novel drug target candidates. The Swiss Model server was used to predict the target proteins' three-dimensional (3D) structure. The molecular docking technique was employed using MOE software for the virtual screening of a library of 15,000 phytochemicals against the interacting residues of the target proteins. Molecular docking experiments were also evaluated using molecular dynamics simulations and the widely used MM-GBSA and MM-PBSA binding free energy techniques. The findings revealed a promising candidate as a novel target against C. pneumonia infections.


Subject(s)
Chlamydia , Proteomics , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Proteome , Proteomics/methods
9.
Saudi J Biol Sci ; 29(2): 1021-1028, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35197771

ABSTRACT

In the current study the potential use of aqueous and methanolic extracts of Ephedra alata aerial parts as biological control agent against pathogenic bacteria and especially Staphylococcus aureus methicillin resistant isolated from auricular infections was evaluated. Chemical tests and spectrophotometric methods were used for screening and quantification of phytochemicals. The assessment of the antioxidant activity was accomplished by DPPH and ABTS radicals scavenging assays. Extracts were evaluated for their antibacterial efficacy by diffusion and microdilution methods. Biofilm inhibition was tested using XTT assay and the cytotoxicity of extracts was carried out on Vero cell line. The GC-FID analysis revealed that E. alata was rich in unsatured fatty acids. In addition, the aqueous extract had the highest flavonoid and protein contents (30.82 mg QE /g dry extract and 98.92 mg BSAE/g dry extract respectively). However, the methanolic extract had the highest phenolic, sugars and tannins. The antioxidant activity demonstrated that the aqueous extract exhibited the strong potency (IC50 ranged between 0.001 and 0.002 mg/mL). Both extracts displayed antimicrobial activity on Gram negative and positive strains. They were effective against S. aureus isolated from auricular infections. The tested extracts were able to inhibit biofilm formation with concentration-dependent manner. Moreover, no cytotoxic effect on Vero cells line was demonstrated for the extracts. Overall, our findings highlight the potential use of E. alata extract as a novel source of bioactive molecules with antioxidant, antibacterial and antiobiofilm effects for the control of infectious disease especially those associated to S. aureus methicillin resistant.

10.
Future Microbiol ; 16: 1029-1039, 2021 09.
Article in English | MEDLINE | ID: mdl-34414770

ABSTRACT

Aim: This study aimed to isolate and identify common bacteria from 19 preterm neonates who spent their first weeks in the neonatal intensive care unit. Materials & methods: Stool samples were collected, and bacteria were isolated and purified from the samples. The isolated bacterial species were tested for antibiotic susceptibility or resistance. Results: Three common species were found in 15 stool samples: Enterobacter cloacae, Enterococcus fecalis and Klebsiella pneumoniae. Minimum inhibitory concentrations determined using antibiotic susceptibility testing showed that the minimum level of isolates was affected by the most commonly used antibiotics, with significant resistance to some of the tested antibiotics. Conclusion: The development of beneficial normal flora in preterm neonates plays a vital role in their health and well-being.


Subject(s)
Anti-Bacterial Agents , Gastrointestinal Microbiome , Infant, Premature , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Enterobacter cloacae , Enterococcus faecalis , Humans , Infant, Newborn , Klebsiella pneumoniae , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...