Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(49): 43113-43126, 2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29148709

ABSTRACT

Here, silica-coated PbS quantum dots (QDs) with photoluminescence emission properties in the near-infrared (NIR) region are proposed as potential effective single particle optical nanoprobes for future in vivo imaging of tumors. The dispersibility in aqueous medium of hydrophobic PbS QDs was accomplished by growing a silica shell on their surface by exploiting a base assisted water-in-oil microemulsion method. The silica-coated PbS QDs were then conjugated with a specifically designed cyclic arginine-glycine-aspartic acid (cRGD) peptide that is able to specifically recognize αvß3 integrins, which are overexpressed in angiogenic tumor-induced vasculatures and on some solid tumors, to achieve tumor-specific targeting. The cRGD peptide PbS silica-coated QDs were systematically characterized, at each step of their preparation, by means of complementary optical and structural techniques, demonstrating appropriate colloidal stability and the maintenance of their optical futures in aqueous solutions. The cellular uptake of cRGD peptide functionalized luminescent nanostructures in human melanoma cells, where overexpression of αvß3 was observed, was assessed by means of confocal microscopy analysis and cytometric study. The selectivity of the cRGD peptide PbS silica-coated QDs for the αvß3 integrin was established, consequently highlighting the significant potential of the developed NIR emitting nanostructures as optically traceable nanoprobes for future αvß3 integrin receptor in vivo targeting in the NIR region.


Subject(s)
Quantum Dots , Humans , Integrins , Lead , Peptides, Cyclic , Sulfides
SELECTION OF CITATIONS
SEARCH DETAIL
...