Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
J Photochem Photobiol B ; 248: 112797, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37862898

ABSTRACT

Drug resistant and undetectable tumors easily escape treatment leading metastases and/or recurrence of the lethal disease. Therefore, it is vital to diagnose and destroy micro tumors using simple yet novel approaches. Here, we present fluorescence-based detection and light-based destruction of cancer cells that are known to be resistant to standard therapies. We developed a superparamagnetic iron oxide nanoparticle (SPION)-based theranostic agent that is composed of self-quenching light activated photosensitizer (BPD) and EGFR targeting ligand (Anti-EGFR ScFv or GE11 peptide). Photosensitizer (BPD) was immobilized to PEG-PEI modified SPION with acid-labile linker. Prior to stimulation of the theranostic system by light its accumulation within cancer cells is vital since BPD phototoxicity and fluorescence is activated by lysosomal proteolysis. As BPD is cleaved, the system switches from off to on position which triggers imaging and therapy. Targeting, therapeutic and diagnostic features of the theranostic system were evaluated in high and moderate level EGFR expressing pancreatic cancer cell lines. Our results indicate that the system distinguishes high and moderate EGFR expression levels and yields up to 4.3-fold increase in intracellular fluorescence intensity. Amplification of fluorescence signal was as low as 1.3-fold in the moderate or no EGFR expressing cell lines. Anti-EGFR ScFv targeted SPION caused nearly 2-fold higher cell death via apoptosis in high EGFR expressing Panc-1 cell line. The developed system, possessing advanced targeting, enhanced imaging and effective therapeutic features, is a promising candidate for multi-mode detection and destruction of residual drug-resistant cancer cells.


Subject(s)
Photosensitizing Agents , Precision Medicine , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Cell Line, Tumor , Magnetic Iron Oxide Nanoparticles , Theranostic Nanomedicine/methods , ErbB Receptors/metabolism , Hydrogen-Ion Concentration
2.
Braz. J. Pharm. Sci. (Online) ; 56: e18579, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132059

ABSTRACT

Temozolomide, a chemotherapeutic drug that is often administered for the treatment of brain cancer has severe side effects and a poor aqueous solubility. In order to decrease the detrimental effect of the drug over healthy cells, a novel drug delivery vehicle was developed where the therapeutic drug was encapsulated within the hydrophobic cavities of b-CD modified magnetite nanoparticles, which are embedded in chitosan nanobeads prepared by salt addition. In-vitro studies have shown that the magnetic properties of the novel delivery vehicle are adequate for targeted drug delivery applications under an external magnetic field. Additionally, an increase in the amount of chitosan was shown to exhibit a strong shielding effect over the magnetic properties of the delivery vehicle, which lead to deterioration of the amount of captured drug at the targeted area, suggesting a delicate balance between the amounts of constituents composing the drug delivery vehicle.


Subject(s)
In Vitro Techniques/instrumentation , Brain Neoplasms , Temozolomide/analysis , Pharmaceutical Preparations/administration & dosage , Cyclodextrins/pharmacology , Chitosan/antagonists & inhibitors , Ferrosoferric Oxide/pharmacology , Magnetite Nanoparticles/adverse effects , Magnetic Fields/adverse effects , Magnetics/classification
3.
Chemistry ; 21(16): 6150-6, 2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25740708

ABSTRACT

Biological systems show impressive control over the shape, size and organization of mineral structures, which often leads to advanced physical properties that are tuned to the function of these materials. Such control is also found in magnetotactic bacteria, which produce-in aqueous medium and at room temperature-magnetite nanoparticles with precisely controlled morphologies and sizes that are generally only accessible in synthetic systems with the use of organic solvents and/or the use of high-temperature methods. The synthesis of magnetite under biomimetic conditions, that is, in water and at room temperature and using polymeric additives as control agents, is of interest as a green production method for magnetic nanoparticles. Inspired by the process of magnetite biomineralization, a rational approach is taken by the use of a solid precursor for the synthesis of magnetite nanoparticles. The conversion of a ferrous hydroxide precursor, which we demonstrate with cryo-TEM and low-dose electron diffraction, is used to achieve control over the solution supersaturation such that crystal growth can be regulated through the interaction with poly-(α,ß)-dl-aspartic acid, a soluble, negatively charged polymer. In this way, stable suspensions of nanocrystals are achieved that show remanence and coercivity at the size limit of superparamagnetism, and which are able to align their magnetic moments forming strings in solution as is demonstrated by cryo-electron tomography.


Subject(s)
Magnetite Nanoparticles/chemistry , Biomimetics , Crystallization , Hydroxides/chemistry , Kinetics , Magnetite Nanoparticles/ultrastructure , Nanotechnology , Oxidation-Reduction , Water/chemistry
4.
Langmuir ; 28(36): 13051-9, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-22889238

ABSTRACT

Magnetic iron oxide nanoparticles have numerous applications in the biomedical field, some more mature, such as contrast agents in magnetic resonance imaging (MRI), and some emerging, such as heating agents in hyperthermia for cancer therapy. In all of these applications, the magnetic particles are coated with surfactants and polymers to enhance biocompatibility, prevent agglomeration, and add functionality. However, the coatings may interact with the surface atoms of the magnetic core and form a magnetically disordered layer, reducing the total amount of the magnetic phase, which is the key parameter in many applications. In the current study, amine and carboxyl functionalized and bare iron oxide nanoparticles, all suspended in water, were purchased and characterized. The presence of the coatings in commercial samples was verified with X-ray photoelectron spectroscopy (XPS). The class of iron oxide (magnetite) was verified via Raman spectroscopy and X-ray diffraction. In addition to these, in-house prepared iron oxide nanoparticles coated with oleic acid and suspended in heptane and hexane were also investigated. The saturation magnetization obtained from vibrating sample magnetometry (VSM) measurements was used to determine the effective concentration of magnetic phase in all samples. The Tiron chelation test was then utilized to check the real concentration of the iron oxide in the suspension. The difference between the concentration results from VSM and the Tiron test confirmed the reduction of magnetic phase of magnetic core in the presence of coatings and different suspension media. For the biocompatible coatings, the largest reduction was experienced by amine particles, where the ratio of the effective weight of magnetic phase reported to the real weight was 0.5. Carboxyl-coated samples experienced smaller reduction with a ratio of 0.64. Uncoated sample also exhibits a reduction with a ratio of 0.6. Oleic acid covered samples show a solvent-depended reduction with a ratio of 0.5 in heptane and 0.4 in hexane. The corresponding effective thickness of the nonmagnetic layer between magnetic core and surface coating was calculated by fitting experimentally measured magnetization to the modified Langevin equation.


Subject(s)
Ferric Compounds/chemistry , Magnetite Nanoparticles/chemistry , Colloids/chemistry , Particle Size , Surface Properties
5.
Nanotechnology ; 22(28): 285713, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21659690

ABSTRACT

Conventional heat transfer fluids have intrinsically poor heat transfer properties compared to solids. Enhancing the efficiency of heat transfer is of great interest for various industrial applications. Suspending solid particles in a fluid increases the thermal conductivity of the resulting suspension and enhances the heat transfer properties. In this work, changes in thermal conductivities of fluids upon the addition of magnetic nanoparticles have been investigated. Fe(3)O(4) nanoparticles are synthesized using different synthesis methods and are suspended in various oils. The effect of the base fluid and the type of magnetic particle on the thermal conductivity is investigated in detail. Up to 28% increase in the thermal conductivity is obtained with 2.5 wt% magnetic particles in hexane. The thermal conductivity enhancement is found to depend on the particle concentration, method of preparation and base fluid. The enhancements obtained are higher than those estimated using any theoretical model present in the literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...