Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-36912907

ABSTRACT

Highly flexible, deformable, and ultralightweight structures are required for advanced sensing applications, such as wearable electronics and soft robotics. This study demonstrates the three-dimensional (3D) printing of highly flexible, ultralightweight, and conductive polymer nanocomposites (CPNCs) with dual-scale porosity and piezoresistive sensing functions. Macroscale pores are established by designing structural printing patterns with adjustable infill densities, while the microscale pores are developed by phase separation of the deposited polymer ink solution. A conductive polydimethylsiloxane solution is prepared by mixing polymer/carbon nanotubes with non-solvent and solvent phases. Silica nanoparticles are utilized to modify the rheological properties of the ink, making direct ink writing (DIW) feasible. 3D geometries with various structural infill densities and polymer concentrations are deposited using DIW. The solvent is evaporated during a stepping heat treatment, leading to non-solvent droplet nucleation and growth. The microscale cellular network is developed by removing the droplets and curing the polymer. Up to 83% tunable porosity is achieved by independently controlling the macro- and microscale porosity. The effect of macroscale/microscale porosity and printing nozzle sizes on the mechanical and piezoresistive behavior of the CPNC structures is explored. The electrical and mechanical tests demonstrate a durable, extremely deformable, and sensitive piezoresistive response without sacrificing mechanical performance. The flexibility and sensitivity of the CPNC structure are enhanced up to 900 and 67% with the development of dual-scale porosity. The application of the developed porous CPNCs as piezoresistive sensors for detecting human motion is also evaluated.

2.
Polymers (Basel) ; 14(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35683941

ABSTRACT

Floating vessel-type oil collecting devices based on sorbent materials present potential solutions to oil spill cleanup that require a massive amount of sorbent material and manual labor. Additionally, continuous oil extraction from these devices presents opportunities for highly energy-efficient oil skimmers that use gravity as the oil/water separation mechanism. Herein, a sorbent-based oil skimmer (SOS) is developed with a novel funnel-shaped sorbent and vessel design for efficient and continuous extraction of various oils from the water surface. A carbon black (CB) embedded polydimethylsiloxane (PDMS) sponge material is characterized and used as the sorbent in the SOS. The nanocomposite sponge formulation is optimized for high reusability, hydrophobicity, and rapid oil absorption. Joule heating functionality of the sponge is also explored to rapidly absorb highly viscous oils that are a significant challenge for oil spill cleanup. The optimized sponge material with the highest porosity and 15 wt% CB loading is tested in the SOS for large-scale oil spill extraction tests and shows effective cleaning of oil spilled on the water surface. The SOS demonstrates a high maximum extraction rate of 200 mL/min for gasoline and maintains a high extraction rate performance upon reuse when the sponge funnel is cleaned and dried.

3.
Materials (Basel) ; 15(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35407949

ABSTRACT

This paper presents the synthesis, characterization, and multiscale modeling of hybrid composites with enhanced interfacial properties consisting of aligned zinc oxide (ZnO) nanowires and continuous carbon fibers. The atomic layer deposition method was employed to uniformly synthesize nanoscale ZnO seeds on carbon fibers. Vertically aligned ZnO nanowires were grown from the deposited nanoscale seeds using the low-temperature hydrothermal method. Morphology and chemical compositions of ZnO nanowires were characterized to evaluate the quality of synthesized ZnO nanowires in hybrid fiber-reinforced composites. Single fiber fragmentation tests reveal that the interfacial shear strength (IFSS) in epoxy composites improved by 286%. Additionally, a multiscale modeling framework was developed to investigate the IFSS of hybrid composites with radially aligned ZnO nanowires. The cohesive zone model (CZM) was implemented to model the interface between fiber and matrix. The damage behavior of fiber was simulated using the ABAQUS user subroutine to define a material's mechanical behavior (UMAT). Both experimental and analytical results indicate that the hierarchical carbon fibers enhanced by aligned ZnO nanowires are effective in improving the key mechanical properties of hybrid fiber-reinforced composites.

4.
Nanomaterials (Basel) ; 11(7)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34361125

ABSTRACT

Porous piezoresistive sensors offer promising flexible sensing functionality, such as human joint motion detection and gesture identification. Herein, a facile fabrication method is developed using a microwave-based rapid porogen removal technique for the manufacturing of porous nanocomposite sponges consisting of polydimethylsiloxane (PDMS) and well-dispersed carbon nanotubes (CNTs). The porogen amounts and CNT loadings are varied to tailor the porosity and electrical properties of the porous sensors. The sponges are characterized by a scanning electron microscope (SEM) to compare their microstructures, validate the high-quality CNT dispersion, and confirm the successful nanofiller embedding within the elastomeric matrix. Sponges with a 3 wt% CNT loading demonstrate the highest piezoresistive sensitivity. Experimental characterization shows that the sponges with low porosity have long durability and minimal strain rate dependence. Additionally, the developed sponges with 3 wt% CNTs are employed for the human motion detection using piezoresistive method. One experiment includes fingertip compression measurements on a prosthetic hand. Moreover, the sensors are attached to the chest, elbow, and knee of a user to detect breathing, running, walking, joint bending, and throwing motions.

5.
Nanomaterials (Basel) ; 10(2)2020 Jan 29.
Article in English | MEDLINE | ID: mdl-32013133

ABSTRACT

In this paper, polydimethylsiloxane (PDMS) and multi-walled carbon nanotube (MWCNT) nanocomposites with piezoresistive sensing function were fabricated using microwave irradiation. The effects of precuring time on the mechanical and electrical properties of nanocomposites were investigated. The increased viscosity and possible nanofiller re-agglomeration during the precuring process caused decreased microwave absorption, resulting in extended curing times, and decreased porosity and electrical conductivity in the cured nanocomposites. The porosity generated during the microwave-curing process was investigated with a scanning electron microscope (SEM) and density measurements. Increased loadings of MWCNTs resulted in shortened curing times and an increased number of small well-dispersed closed-cell pores. The mechanical properties of the synthesized nanocomposites including stress-strain behaviors and Young's Modulus were examined. Experimental results demonstrated that the synthesized nanocomposites with 2.5 wt. % MWCNTs achieved the highest piezoresistive sensitivity with an average gauge factor of 7.9 at 10% applied strain. The piezoresistive responses of these nanocomposites were characterized under compressive loads at various maximum strains, loading rates, and under viscoelastic stress relaxation conditions. The 2.5 wt. % nanocomposite was successfully used in an application as a skin-attachable compression sensor for human motion detection including squeezing a golf ball.

6.
Materials (Basel) ; 12(9)2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31035448

ABSTRACT

The three-dimensional nano-morphology of poly(methyl methacrylate; PMMA) microcapsules filled with carbon nanotubes (CNTs) and epoxy resin were investigated by various microscopy methods, including a novel, laser scanning confocal microscopy (LSCM) method. Initially, PMMA microcapsules containing various amounts of CNTs were synthesized by a solvent evaporation method. Scanning electron microscopy analysis showed that pore-free, smooth-surface microcapsules formed with various types of core-shell morphologies. The average size of CNT/epoxy/PMMA microcapsules was shown to decrease from ~52 µm to ~15 µm when mixing speed during synthesis increased from 300 rpm to 1000 rpm. In general, the presence of CNTs resulted in slightly larger microcapsules and higher variations in size. Moreover, three-dimensional scans obtained from confocal microscopy revealed that higher CNT content increased the occurrence and size of CNT aggregates inside the microcapsules. Entrapped submicron air bubbles were also observed inside most microcapsules, particularly within those with higher CNT content.

7.
Materials (Basel) ; 11(11)2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30380733

ABSTRACT

With growing environmental awareness, natural fibers have recently received significant interest as reinforcement in polymer composites. Among natural fibers, silk can potentially be a natural alternative to glass fibers, as it possesses comparable specific mechanical properties. In order to investigate the processability and properties of silk reinforced composites, vacuum assisted resin transfer molding (VARTM) was used to manufacture composite laminates reinforced with woven silk preforms. Specific mechanical properties of silk/epoxy laminates were found to be anisotropic and comparable to those of glass/epoxy. Silk composites even exhibited a 23% improvement of specific flexural strength along the principal weave direction over the glass/epoxy laminate. Applying 300 kPa external pressure after resin infusion was found to improve the silk/epoxy interface, leading to a discernible increase in breaking energy and interlaminar shear strength. Moreover, the effect of fabric moisture on the laminate properties was investigated. Unlike glass mats, silk fabric was found to be prone to moisture absorption from the environment. Moisture presence in silk fabric prior to laminate fabrication yielded slower fill times and reduced mechanical properties. On average, 10% fabric moisture induced a 25% and 20% reduction in specific flexural strength and modulus, respectively.

8.
J Vis Exp ; (135)2018 05 17.
Article in English | MEDLINE | ID: mdl-29863655

ABSTRACT

This work demonstrates a protocol to improve the quality of composite laminates fabricated by wet lay-up vacuum bag processes using the recently developed magnet assisted composite manufacturing (MACM) technique. In this technique, permanent magnets are utilized to apply a sufficiently high consolidation pressure during the curing stage. To enhance the intensity of the magnetic field, and thus, to increase the magnetic compaction pressure, the magnets are placed on a magnetic top plate. First, the entire procedure of preparing the composite lay-up on a magnetic bottom steel plate using the conventional wet lay-up vacuum bag process is described. Second, placement of a set of Neodymium-Iron-Boron permanent magnets, arranged in alternating polarity, on the vacuum bag is illustrated. Next, the experimental procedures to measure the magnetic compaction pressure and volume fractions of the composite constituents are presented. Finally, methods used to characterize microstructure and mechanical properties of composite laminates are discussed in detail. The results prove the effectiveness of the MACM method in improving the quality of wet lay-up vacuum bag laminates. This method does not require large capital investment for tooling or equipment and can also be used to consolidate geometrically complex composite parts by placing the magnets on a matching top mold positioned on the vacuum bag.


Subject(s)
Equipment Design/methods , Magnets/chemistry , Vacuum , Humans , Pressure
9.
Polymers (Basel) ; 10(9)2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30960917

ABSTRACT

This study presents a novel method to fabricate high-quality, large composite parts which can be used in a wet lay-up/vacuum bag (WLVB) process. The new method utilizes a commercial lifting magnet, which is commonly used for transporting ferrous plates, to apply a magnetic consolidation pressure on the WLVB composite lay-up. The pressure is applied on a large area of the laminate by slowly sliding the magnet over the vacuum bag surface, which leads to an improved laminate quality. When further improvement is desirable, multiple passes of the magnet can be performed, where each pass successively compacts the lay-up. To explore the feasibility of implementing this technique, random mat and plain weave glass/epoxy laminates were fabricated, and their properties compared to conventional WLVB laminates. The effects of the number of moving passes of the lifting magnet on the laminate microstructure and properties are also investigated. As a result of multiple passes, the fiber volume fraction in random mat and plain weave laminates increases to 34% and 53%, representing 80% and 16% improvements, respectively. In addition, the void volume fraction reduces almost by 60% to a very low level of 0.7% and 1.1%, respectively. Consequently, the flexural properties considerably enhance by 20⁻81%, which demonstrates the potential of the proposed method to produce WLVB parts with substantially higher quality. It is also shown that there exists an optimal number of passes, depending on the fabric type where additional passes induce new voids as a result of excessive resin removal.

10.
AIHA J (Fairfax, Va) ; 63(2): 141-50, 2002.
Article in English | MEDLINE | ID: mdl-11975649

ABSTRACT

Exposures to toxic or pathogenic aerosols are known to produce adverse health effects. The nature and severity of these effects often are governed in large part by the location and amount of aerosol deposition within the respiratory tract. Morphologically detailed replica hollow lung airway casts are widely used in aerosol deposition research; however, techniques are not currently available that allow replicate deposition studies in identical morphologically detailed casts produced from a common reference anatomy. This project developed a technique for the precision manufacture of morphologically detailed human tracheobronchial airway models based on high-resolution anatomical imaging data. Detailed physical models were produced using the selective laser sintering (SLS) rapid prototyping process. Input to the SLS process was a three-dimensional computer model developed by boundary-based two-dimension to three-dimension conversion of anatomical images from the original National Institutes of Health/National Library of Medicine Visible Human male data set. The SLS process produced identical replicate models that corresponded exactly to the anatomical section images, within the limits of the measurement. At least five airway generations were achievable, corresponding to airways less than 2 mm in diameter. It is anticipated that rapid prototyping manufacture of respiratory tract structures based on reference anatomies such as the Visible Male and Visible Female may provide "gold standard" models for inhaled aerosol deposition studies. Adaptations of the models to represent various disease states may be readily achieved, thereby promoting exploration of pharmaceutical research on targeted drug delivery via inhaled aerosols.


Subject(s)
Aerosols , Anatomy, Cross-Sectional , Inhalation Exposure , Models, Biological , Respiratory System/anatomy & histology , Air Pollutants/adverse effects , Anthropometry , Computer Simulation , Equipment Design , Humans , Lasers
SELECTION OF CITATIONS
SEARCH DETAIL
...