Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Prog ; 17(1): 52-6, 2001.
Article in English | MEDLINE | ID: mdl-11170479

ABSTRACT

The purpose of this study was to explore a fermentation route for the production of 1,2-propanediol (1,2-PD) from renewable sugars: lactose found in cheese whey, and D-glucose, D-galactose, L-arabinose, and D-xylose found in corn and wood byproducts. Thermoanaerobacterium thermosaccharolyticum, a naturally occurring organism, was found to ferment a wider range of sugars to 1,2-PD than previously reported. The specific sugar had a significant effect on the selectivity for 1,2-PD vs other fermentation products such as ethanol, D- and L-lactate, and acetate. T. thermosaccharolyticum potentially provides an environmentally friendly route to a major commodity chemical now made from petrochemicals.


Subject(s)
Bacteria, Anaerobic/metabolism , Carbohydrate Metabolism , Propylene Glycol/metabolism , Cheese , Fermentation , Zea mays/metabolism
2.
Biotechnol Prog ; 16(6): 940-6, 2000.
Article in English | MEDLINE | ID: mdl-11101319

ABSTRACT

1,2-Propanediol (1,2-PD) is a major commodity chemical currently derived from propylene. Previously, we have demonstrated the production of enantiomerically pure (R)-1,2-propanediol from glucose by an engineered E. coli expressing genes for NADH-linked glycerol dehydrogenase and methylglyoxal synthase. In this work, we investigate three methods to improve 1,2-PD in E. coli. First, we investigated improving the host by eliminating production of a byproduct, lactate. To do this, we constructed strains with mutations in two enzymes involved in lactate production, lactate dehydrogenase and glyoxalase I. (Surprisingly, when mutations were made in its ability to produce lactate, one strain of E. coli [MM294], produced a small amount of 1,2-PD without any added genes.) Second, we constructed a complete pathway to 1,2-PD from the glycolytic intermediate, dihydroxyacetone phosphate. Our previous 1, 2-PD producing strains relied on at least one endogenous E. coli activity and only produced 0.7 g/L of 1,2-PD. The complete pathway involved the coexpression of methylglyoxal synthase (mgs), glycerol dehydrogenase (gldA), and either yeast alcohol dehydrogenase (adhI) or E. coli 1,2-propanediol oxidoreductase (fucO). Third, we investigated bioprocessing improvements by carrying out a fed-batch fermentation with the best engineered strain (expressing mgs, gldA, and fucO). A final titer of 4.5 g/L of (R)-1,2-PD was produced, with a final yield of 0.19 g of 1,2-PD per gram of glucose consumed. This work provides a basis for further strain and process improvement.


Subject(s)
Escherichia coli/metabolism , Propylene Glycol/metabolism , Escherichia coli/genetics , Escherichia coli/growth & development , Fermentation , Genetic Engineering , L-Lactate Dehydrogenase/metabolism , Plasmids , Propylene Glycol/chemistry , Stereoisomerism
3.
Appl Environ Microbiol ; 65(3): 1180-5, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10049880

ABSTRACT

1,2-Propanediol (1,2-PD) is a major commodity chemical that is currently derived from propylene, a nonrenewable resource. A goal of our research is to develop fermentation routes to 1,2-PD from renewable resources. Here we report the production of enantiomerically pure R-1,2-PD from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes (E. coli gldA or Klebsiella pneumoniae dhaD). We also show that E. coli overexpressing the E. coli methylglyoxal synthase gene (mgs) produced 1,2-PD. The expression of either glycerol dehydrogenase or methylglyoxal synthase resulted in the anaerobic production of approximately 0.25 g of 1,2-PD per liter. R-1,2-PD production was further improved to 0.7 g of 1,2-PD per liter when methylglyoxal synthase and glycerol dehydrogenase (gldA) were coexpressed. In vitro studies indicated that the route to R-1,2-PD involved the reduction of methylglyoxal to R-lactaldehyde by the recombinant glycerol dehydrogenase and the reduction of R-lactaldehyde to R-1, 2-PD by a native E. coli activity. We expect that R-1,2-PD production can be significantly improved through further metabolic and bioprocess engineering.


Subject(s)
Escherichia coli/enzymology , Escherichia coli/genetics , Genetic Engineering , Propylene Glycol/metabolism , Sugar Alcohol Dehydrogenases/metabolism , Anaerobiosis , Carbon-Oxygen Lyases/genetics , Carbon-Oxygen Lyases/metabolism , Fermentation , Glucose/metabolism , Isopropyl Thiogalactoside/metabolism , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , Propylene Glycol/chemistry , Sugar Alcohol Dehydrogenases/genetics , Transformation, Bacterial
4.
Biotechnol Prog ; 14(1): 116-25, 1998.
Article in English | MEDLINE | ID: mdl-9496676

ABSTRACT

Microbial fermentation is an important technology for the conversion of renewable resources to chemicals. In this paper, we describe the application of metabolic engineering for the development of two new fermentation processes: the microbial conversion of sugars to 1,3-propanediol (1,3-PD) and 1,2-propanediol (1,2-PD). A variety of naturally occurring organisms ferment glycerol to 1,3-PD, but no natural organisms ferment sugars directly to 1,3-PD. We first describe the fed-batch fermentation of glycerol to 1,3-PD by Klebsiella pneumoniae. We then present various approaches for the conversion of sugars to 1,3-PD, including mixed-culture fermentation, cofermentation of glycerol and glucose, and metabolic engineering of a "sugars to 1,3-PD" pathway in a single organism. Initial results are reported for the expression of genes from the K. pneumoniae 1,3-PD pathway in Saccharomyces cerevisiae. The best naturally occurring organism for the fermentation of sugars to 1,2-PD is Thermoanaerobacterium thermosaccharolyticum. We describe the fermentation of several different sugars to 1,2-PD by this organism in batch and continuous culture. We report that Escherichia coli strains engineered to express either aldose reductase or glycerol dehydrogenase convert glucose to (R)-1,2-PD. We then analyze the ultimate potential of fermentation processes for the production of propanediols. Linear optimization studies indicate that, under aerobic conditions, propanediol yields that approach the theoretical maximum are possible and CO2 is the primary coproduct. Without the need to produce acetate, final product titers in the range of 100 g/L should be possible; the high titers and low coproduct levels should make product recovery and purification straightforward. The examples given in this paper illustrate the importance of metabolic engineering for fermentation process development in general.


Subject(s)
Biotechnology , Carbohydrate Metabolism , Genetic Engineering , Propylene Glycol/metabolism , Propylene Glycols/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fermentation , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...