Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(12): e0145222, 2015.
Article in English | MEDLINE | ID: mdl-26710102

ABSTRACT

We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length.


Subject(s)
Algorithms , Artificial Intelligence , Computer Simulation , Automobiles , Computer Communication Networks , Computer Graphics , Travel
2.
PLoS One ; 10(7): e0119286, 2015.
Article in English | MEDLINE | ID: mdl-26177449

ABSTRACT

We study a class of games which models the competition among agents to access some service provided by distributed service units and which exhibits congestion and frustration phenomena when service units have limited capacity. We propose a technique, based on the cavity method of statistical physics, to characterize the full spectrum of Nash equilibria of the game. The analysis reveals a large variety of equilibria, with very different statistical properties. Natural selfish dynamics, such as best-response, usually tend to large-utility equilibria, even though those of smaller utility are exponentially more numerous. Interestingly, the latter actually can be reached by selecting the initial conditions of the best-response dynamics close to the saturation limit of the service unit capacities. We also study a more realistic stochastic variant of the game by means of a simple and effective approximation of the average over the random parameters, showing that the properties of the average-case Nash equilibria are qualitatively similar to the deterministic ones.


Subject(s)
Game Theory , Entropy , Models, Theoretical , Stochastic Processes
3.
Phys Rev Lett ; 112(11): 118701, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24702425

ABSTRACT

We study several Bayesian inference problems for irreversible stochastic epidemic models on networks from a statistical physics viewpoint. We derive equations which allow us to accurately compute the posterior distribution of the time evolution of the state of each node given some observations. At difference with most existing methods, we allow very general observation models, including unobserved nodes, state observations made at different or unknown times, and observations of infection times, possibly mixed together. Our method, which is based on the belief propagation algorithm, is efficient, naturally distributed, and exact on trees. As a particular case, we consider the problem of finding the "zero patient" of a susceptible-infected-recovered or susceptible-infected epidemic given a snapshot of the state of the network at a later unknown time. Numerical simulations show that our method outperforms previous ones on both synthetic and real networks, often by a very large margin.


Subject(s)
Bayes Theorem , Contact Tracing/methods , Epidemiologic Methods , Models, Statistical , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...